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Preface

All problems in computer science

can be solved by another level of indirection,

except for the problem of too many layers of indirection.
— David J. Wheeler

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better
checked by the compiler and run faster.

In this book, I aim for completeness. 1 describe every language feature and standard-library

component that a professional programmer is likely to need. For each, I provide:

* Rationale: What kinds of problems is it designed to help solve? What principles underlie
the design? What are the fundamental limitations?

* Specification: What is its definition? The level of detail is chosen for the expert program-
mer; the aspiring language lawyer can follow the many references to the ISO standard.

* Examples: How can it be used well by itself and in combination with other features? What
are the key techniques and idioms? What are the implications for maintainability and per-
formance?

The use of C++ has changed dramatically over the years and so has the language itself. From the
point of view of a programmer, most of the changes have been improvements. The current ISO
standard C++ (ISO/IEC 14882-2011, usually called C++11) is simply a far better tool for writing
quality software than were previous versions. How is it a better tool? What kinds of programming
styles and techniques does modern C++ support? What language and standard-library features sup-
port those techniques? What are the basic building blocks of elegant, correct, maintainable, and
efficient C++ code? Those are the key questions answered by this book. Many answers are not the
same as you would find with 1985, 1995, or 2005 vintage C++: progress happens.

C++ is a general-purpose programming language emphasizing the design and use of type-rich,

lightweight abstractions. It is particularly suited for resource-constrained applications, such as
those found in software infrastructures. C++ rewards the programmer who takes the time to master
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techniques for writing quality code. C++ is a language for someone who takes the task of program-
ming seriously. Our civilization depends critically on software; it had better be quality software.

There are billions of lines of C++ deployed. This puts a premium on stability, so 1985 and
1995 C++ code still works and will continue to work for decades. However, for all applications,
you can do better with modern C++; if you stick to older styles, you will be writing lower-quality
and worse-performing code. The emphasis on stability also implies that standards-conforming
code you write today will still work a couple of decades from now. All code in this book conforms
to the 2011 ISO C++ standard.

This book is aimed at three audiences:

e C++ programmers who want to know what the latest ISO C++ standard has to offer,

e C programmers who wonder what C++ provides beyond C, and

* People with a background in application languages, such as Java, C#, Python, and Ruby,

looking for something ““closer to the machine”” — something more flexible, something offer-
ing better compile-time checking, or something offering better performance.
Naturally, these three groups are not disjoint — a professional software developer masters more than
just one programming language.

This book assumes that its readers are programmers. If you ask, “What’s a for-loop?” or
“What’s a compiler?” then this book is not (yet) for you; instead, I recommend my Programming:
Principles and Practice Using C++ to get started with programming and C++. Furthermore, I
assume that readers have some maturity as software developers. If you ask ‘“Why bother testing?”’
or say, “All languages are basically the same; just show me the syntax™ or are confident that there
is a single language that is ideal for every task, this is not the book for you.

What features does C++11 offer over and above C+4+98? A machine model suitable for modern
computers with lots of concurrency. Language and standard-library facilities for doing systems-
level concurrent programming (e.g., using multicores). Regular expression handling, resource
management pointers, random numbers, improved containers (including, hash tables), and more.
General and uniform initialization, a simpler for-statement, move semantics, basic Unicode support,
lambdas, general constant expressions, control over class defaults, variadic templates, user-defined
literals, and more. Please remember that those libraries and language features exist to support pro-
gramming techniques for developing quality software. They are meant to be used in combination —
as bricks in a building set — rather than to be used individually in relative isolation to solve a spe-
cific problem. A computer is a universal machine, and C++ serves it in that capacity. In particular,
C++’s design aims to be sufficiently flexible and general to cope with future problems undreamed
of by its designers.
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Preface to the Third Edition

Programming is understanding.
— Kristen Nygaard

I find using C++ more enjoyable than ever. C++’s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc-
ceeded at tasks I hadn’t even dreamt of.

This book introduces standard C++7 and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro-
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the most
experienced C++ programmer; at the same time, this book is easier for the novice to approach than
its predecessors were. The explosion of C++ use and the massive amount of experience accumu-
lated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a “‘bottom up”
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan-
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro-
gramming examples and design techniques.

This book presents every major C++ language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their use.

1 ISO/IEC 14882, Standard for the C++ Programming Language.
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That is, the focus is on the language as the tool for design and programming rather than on the lan-
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion, The Annotated C++ Language Stan-
dard, presents the complete language definition together with annotations to make it more compre-
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.
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The road goes ever on and on.
— Bilbo Baggins

As promised in the first edition of this book, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working
in a great range of application areas. The C++ user-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techniques
have been discovered and/or validated by experience. Some of these experiences are reflected here.

The primary aim of the language extensions made in the last six years has been to enhance C++
as a language for data abstraction and object-oriented programming in general and to enhance it as
a tool for writing high-quality libraries of user-defined types in particular. A “high-quality
library,” is a library that provides a concept to a user in the form of one or more classes that are
convenient, safe, and efficient to use. In this context, safe means that a class provides a specific
type-safe interface between the users of the library and its providers; efficient means that use of the
class does not impose significant overheads in run-time or space on the user compared with hand-
written C code.

This book presents the complete C++ language. Chapters 1 through 10 give a tutorial introduc-
tion; Chapters 11 through 13 provide a discussion of design and software development issues; and,
finally, the complete C++ reference manual is included. Naturally, the features added and resolu-
tions made since the original edition are integral parts of the presentation. They include refined
overloading resolution, memory management facilities, and access control mechanisms, type-safe
linkage, const and static member functions, abstract classes, multiple inheritance, templates, and
exception handling.

C++ is a general-purpose programming language; its core application domain is systems pro-
gramming in the broadest sense. In addition, C++ is successfully used in many application areas
that are not covered by this label. Implementations of C++ exist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Consequently,
this book describes the C++ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified as
“toys.” This style of exposition allows general principles and useful techniques to stand out more
clearly than they would in a fully elaborated program, where they would be buried in details. Most
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of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics
classes, associative arrays, etc., are available in ““bulletproof” and/or “goldplated” versions from a
wide variety of commercial and non-commercial sources. Many of these “industrial strength”
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of this
book. However, the presentation is still aimed squarely at experienced programmers and endeavors
not to insult their intelligence or experience. The discussion of design issues has been greatly
expanded to reflect the demand for information beyond the description of language features and
their immediate use. Technical detail and precision have also been increased. The reference man-
ual, in particular, represents many years of work in this direction. The intent has been to provide a
book with a depth sufficient to make more than one reading rewarding to most programmers. In
other words, this book presents the C++ language, its fundamental principles, and the key tech-
niques needed to apply it. Enjoy!
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Language shapes the way we think,
and determines what we can think about.
— B.L. Whorf

C++ is a general purpose programming language designed to make programming more enjoyable
for the serious programmer. Except for minor details, C++ is a superset of the C programming lan-
guage. In addition to the facilities provided by C, C++ provides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defining
new types that closely match the concepts of the application. This technique for program construc-
tion is often called data abstraction. Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be deter-
mined at compile time. Programs using objects of such types are often called object based. When
used well, these techniques result in shorter, easier to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typing,
user-controlled memory management, and mechanisms for overloading operators. C++ provides
much better facilities for type checking and for expressing modularity than C does. It also contains
improvements that are not directly related to classes, including symbolic constants, inline substitu-
tion of functions, default function arguments, overloaded function names, free store management
operators, and a reference type. C++ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined types to
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will run
on most systems that support C. C libraries can be used from a C++ program, and most tools that
support programming in C can be used with C++.

This book is primarily intended to help serious programmers learn the language and use it for
nontrivial projects. It provides a complete description of C++, many complete examples, and many
more program fragments.
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Part 1

Introduction

This introduction gives an overview of the major concepts and features of the C++ pro-
gramming language and its standard library. It also provides an overview of this book
and explains the approach taken to the description of the language facilities and their
use. In addition, the introductory chapters present some background information about
C++, the design of C++, and the use of C++.

Chapters

Notes to the Reader

A Tour of C++: The Basics

A Tour of C++: Abstraction Mechanisms
A Tour of C++: Containers and Algorithms
A Tour of C++: Concurrency and Utilities

(S OSSR
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... and you, Marcus, you have given me many things; now I shall give you this good
advice. Be many people. Give up the game of being always Marcus Cocoza. You
have worried too much about Marcus Cocoza, so that you have been really his slave
and prisoner. You have not done anything without first considering how it would affect
Marcus Cocoza’s happiness and prestige. You were always much afraid that Marcus
might do a stupid thing, or be bored. What would it really have mattered? All over the
world people are doing stupid things ... I should like you to be easy, your little heart to
be light again. You must from now, be more than one, many people, as many as you
can think of ...”

— Karen Blixen,
The Dreamers from Seven Gothic Tales (1934)



1

Notes to the Reader

Hurry Slowly
(festina lente).
— Octavius, Caesar Augustus

e The Structure of This Book
Introduction; Basic Facilities; Abstraction Mechanisms; The Standard Library; Examples
and References
e The Design of C++
Programming Styles; Type Checking; C Compatibility; Language, Libraries, and Systems
e Learning C++
Programming in C++; Suggestions for C++ Programmers; Suggestions for C Programmers;
Suggestions for Java Programmers
e History
Timeline; The Early Years; The 1998 Standard; The 2011 Standard; What is C++ Used for?
e Advice
e References

1.1 The Structure of This Book

A pure tutorial sorts its topics so that no concept is used before it has been introduced; it must be
read linearly starting with page one. Conversely, a pure reference manual can be accessed starting
at any point; it describes each topic succinctly with references (forward and backward) to related
topics. A pure tutorial can in principle be read without prerequisites — it carefully describes all. A
pure reference can be used only by someone familiar with all fundamental concepts and techniques.
This book combines aspects of both. If you know most concepts and techniques, you can access it
on a per-chapter or even on a per-section basis. If not, you can start at the beginning, but try not to
get bogged down in details. Use the index and the cross-references.
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Making parts of the book relatively self-contained implies some repetition, but repetition also
serves as review for people reading the book linearly. The book is heavily cross-referenced both to
itself and to the ISO C++ standard. Experienced programmers can read the (relatively) quick
“tour” of C++ to gain the overview needed to use the book as a reference. This book consists of
four parts:

Part 1 Introduction: Chapter 1 (this chapter) is a guide to this book and provides a bit of

C++ background. Chapters 2-5 give a quick introduction to the C++ language
and its standard library.

Part Il Basic Facilities: Chapters 6-15 describe C++’s built-in types and the basic facili-
ties for constructing programs out of them.

Part 1T Abstraction Mechanisms: Chapters 16-29 describe C++’s abstraction mecha-
nisms and their use for object-oriented and generic programming.

Part IV Chapters 30-44 provide an overview of the standard library and a discussion of

compatibility issues.

1.1.1 Introduction

This chapter, Chapter 1, provides an overview of this book, some hints about how to use it, and
some background information about C++ and its use. You are encouraged to skim through it, read
what appears interesting, and return to it after reading other parts of the book. Please do not feel
obliged to read it all carefully before proceeding.

The following chapters provide an overview of the major concepts and features of the C++ pro-

gramming language and its standard library:

Chapter 2 A Tour of C++: The Basics describes C++’s model of memory, computation, and
error handling.

Chapter 3 A Tour of C++: Abstraction Mechanisms presents the language features support-
ing data abstraction, object-oriented programming, and generic programming.

Chapter 4 A Tour of C++: Containers and Algorithms introduces strings, simple 1/O, con-
tainers, and algorithms as provided by the standard library.

Chapter 5 A Tour of C++: Concurrency and Utilities outlines the standard-library utilities
related to resource management, concurrency, mathematical computation, regu-
lar expressions, and more.

This whirlwind tour of C++’s facilities aims to give the reader a taste of what C++ offers. In partic-
ular, it should convince readers that C++ has come a long way since the first, second, and third edi-
tions of this book.

1.1.2 Basic Facilities

Part II focuses on the subset of C++ that supports the styles of programming traditionally done in C
and similar languages. It introduces the notions of type, object, scope, and storage. It presents the
fundamentals of computation: expressions, statements, and functions. Modularity — as supported
by namespaces, source files, and exception handling — is also discussed:
Chapter 6 Types and Declarations: Fundamental types, naming, scopes, initialization, sim-
ple type deduction, object lifetimes, and type aliases
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Chapter 7 Pointers, Arrays, and References

Chapter 8 Structures, Unions, and Enumerations

Chapter 9 Statements: Declarations as statements, selection statements (if and switch), itera-
tion statements (for, while, and do), goto, and comments

Chapter 10 Expressions: A desk calculator example, survey of operators, constant expres-
sions, and implicit type conversion.

Chapter 11 Select Operations: Logical operators, the conditional expression, increment and
decrement, free store (new and delete), {}-lists, lambda expressions, and explicit
type conversion (static_cast and const_cast)

Chapter 12 Functions: Function declarations and definitions, inline functions, constexpr
functions, argument passing, overloaded functions, pre- and postconditions,
pointers to functions, and macros

Chapter 13 Exception Handling: Styles of error handling, exception guarantees, resource
management, enforcing invariants, throw and catch, a vector implementation

Chapter 14 ~ Namespaces: namespace, modularization and interface, composition using name-
spaces

Chapter 15  Source Files and Programs: Separate compilation, linkage, using header files,
and program start and termination

I assume that you are familiar with most of the programming concepts used in Part I. For example,
I explain the C++ facilities for expressing recursion and iteration, but I do not go into technical
details or spend much time explaining how these concepts are useful.

The exception to this rule is exceptions. Many programmers lack experience with exceptions or
got their experience from languages (such as Java) where resource management and exception han-
dling are not integrated. Consequently, the chapter on exception handling (Chapter 13) presents the
basic philosophy of C++ exception handling and resource management. It goes into some detail
about strategy with a focus on the “Resource Acquisition Is Initialization™ technique (RAII).

1.1.3 Abstraction Mechanisms

Part III describes the C++ facilities supporting various forms of abstraction, including object-ori-
ented and generic programming. The chapters fall into three rough categories: classes, class hierar-
chies, and templates.

The first four chapters concentrate of the classes themselves:

Chapter 16  Classes: The notion of a user-defined type, a class, is the foundation of all C++
abstraction mechanisms.

Chapter 17  Construction, Cleanup, Copy, and Move shows how a programmer can define the
meaning of creation and initialization of objects of a class. Further, the meaning
of copy, move, and destruction can be specified.

Chapter 18  Operator Overloading presents the rules for giving meaning to operators for
user-defined types with an emphasis on conventional arithmetic and logical oper-
ators, such as +, =, and &.

Chapter 19  Special Operators discusses the use of user-defined operator for non-arithmetic
purposes, such as [] for subscripting, () for function objects, and —> for ““smart
pointers.”
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Classes can be organized into hierarchies:

Chapter 20

Chapter 21

Chapter 22

Derived Classes presents the basic language facilities for building hierarchies out
of classes and the fundamental ways of using them. We can provide complete
separation between an interface (an abstract class) and its implementations
(derived classes); the connection between them is provided by virtual functions.
The C++ model for access control (public, protected, and private) is presented.
Class Hierarchies discusses ways of using class hierarchies effectively. It also
presents the notion of multiple inheritance, that is, a class having more than one
direct base class.

Run-Time Type Information presents ways to navigate class hierarchies using
data stored in objects. We can use dynamic_cast to inquire whether an object of
a base class was defined as an object of a derived class and use the typeid to gain
minimal information from an object (such as the name of its class).

Many of the most flexible, efficient, and useful abstractions involve the parameterization of types
(classes) and algorithms (functions) with other types and algorithms:

Chapter 23

Chapter 24

Chapter 25

Chapter 26
Chapter 27

Chapter 28

Chapter 29

Templates presents the basic principles behind templates and their use. Class
templates, function templates, and template aliases are presented.

Generic Programming introduces the basic techniques for designing generic pro-
grams. The technique of /ifting an abstract algorithm from a number of concrete
code examples is central, as is the notion of concepts specifying a generic algo-
rithm’s requirements on its arguments.

Specialization describes how templates are used to generate classes and func-
tions, specializations, given a set of template arguments.

Instantiation focuses on the rules for name binding.

Templates and Hierarchies explains how templates and class hierarchies can be
used in combination.

Metaprogramming explores how templates can be used to generate programs.
Templates provide a Turing-complete mechanism for generating code.

A Matrix Design gives a longish example to show how language features can be
used in combination to solve a complex design problem: the design of an N-
dimensional matrix with near-arbitrary element types.

The language features supporting abstraction techniques are described in the context of those tech-
niques. The presentation technique in Part III differs from that of Part II in that I don’t assume that
the reader knows the techniques described.

1.1.4 The Standard Library

The library chapters are less tutorial than the language chapters. In particular, they are meant to be
read in any order and can be used as a user-level manual for the library components:

Chapter 30

Chapter 31

Standard-Library Overview gives an overview of the standard library, lists the
standard-library headers, and presents language support and diagnostics support,
such as exception and system_error.

STL Containers presents the containers from the iterators, containers, and algo-
rithms framework (called the STL), including vector, map, and unordered_set.
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Chapter 32
Chapter 33

Chapter 34

Chapter 35
Chapter 36

Chapter 37

Chapter 38

Chapter 39

Chapter 40
Chapter 41

Chapter 42

Chapter 43

Chapter 44

The Standard Library 7

STL Algorithms presents the algorithms from the STL, including find(), sort(),
and merge().

STL Iterators presents iterators and other utilities from the STL, including
reverse_iterator, move_iterator, and function.

Memory and Resources presents utility components related to memory and
resource management, such as array, bitset, pair, tuple, unique_ptr, shared_ptr,
allocators, and the garbage collector interface.

Utilities presents minor utility components, such as time utilities, type traits, and
various type functions.

Strings documents the string library, including the character traits that are the
basis for the use of different character sets.

Regular Expressions describes the regular expression syntax and the various
ways of using it for string matching, including regex_match() for matching a
complete string, regex_search() for finding a pattern in a string, regex_replace()
for simple replacement, and regex_iterator for general traversal of a stream of
characters.

1/0 Streams documents the stream I/O library. It describes formatted and unfor-
matted input and output, error handling, and buffering.

Locales describes class locale and its various facets that provide support for the
handling of cultural differences in character sets, formatting of numeric values,
formatting of date and time, and more.

Numerics describes facilities for numerical computation (such as complex,
valarray, random numbers, and generalized numerical algorithms).

Concurrency presents the C++ basic memory model and the facilities offered for
concurrent programming without locks.

Threads and Tasks presents the classes providing threads-and-locks-style concur-
rent programming (such as thread, timed_mutex, lock_guard, and try_lock()) and
the support for task-based concurrency (such as future and async()).

The C Standard Library documents the C standard library (including printf() and
clock()) as incorporated into the C++ standard library.

Compatibility discusses the relation between C and C++ and between Standard
C++ (also called ISO C++) and the versions of C++ that preceded it.

1.1.5 Examples and References

This book emphasizes program organization rather than the design of algorithms. Consequently, I
avoid clever or harder-to-understand algorithms. A trivial algorithm is typically better suited to
illustrate an aspect of the language definition or a point about program structure. For example, I
use a Shell sort where, in real code, a quicksort would be better. Often, reimplementation with a
more suitable algorithm is an exercise. In real code, a call of a library function is typically more
appropriate than the code used here to illustrate language features.

Textbook examples necessarily give a warped view of software development. By clarifying and
simplifying the examples, the complexities that arise from scale disappear. I see no substitute for
writing realistically sized programs in order to get an impression of what programming and a
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programming language are really like. This book concentrates on the language features and the
standard-library facilities. These are the basic techniques from which every program is composed.
The rules and techniques for such composition are emphasized.

The selection of examples reflects my background in compilers, foundation libraries, and simu-
lations. The emphasis reflects my interest in systems programming. Examples are simplified ver-
sions of what is found in real code. The simplification is necessary to keep programming language
and design points from getting lost in details. My ideal is the shortest and clearest example that
illustrates a design principle, a programming technique, a language construct, or a library feature.
There are no “‘cute” examples without counterparts in real code. For purely language-technical
examples, I use variables named x and y, types called A and B, and functions called f() and g().

Where possible, the C++ language and library features are presented in the context of their use
rather than in the dry manner of a manual. The language features presented and the detail in which
they are described roughly reflect my view of what is needed for effective use of C++. The purpose
is to give you an idea of how a feature can be used, often in combination with other features. An
understanding of every language-technical detail of a language feature or library component is nei-
ther necessary nor sufficient for writing good programs. In fact, an obsession with understanding
every little detail is a prescription for awful — overelaborate and overly clever — code. What is
needed is an understanding of design and programming techniques together with an appreciation of
application domains.

I assume that you have access to online information sources. The final arbiter of language and
standard-library rules is the ISO C++ standard [C++,2011].

References to parts of this book are of the form §2.3.4 (Chapter 2, section 3, subsection 4) and
§is0.5.3.1 (ISO C++ standard, §5.3.1). Italics are used sparingly for emphasis (e.g., ““a string literal
is not acceptable”), for first occurrences of important concepts (e.g., polymorphism), and for com-
ments in code examples.

To save a few trees and to simplify additions, the hundreds of exercises for this book have been
moved to the Web. Look for them at www.stroustrup.com.

The language and library used in this book are “pure C++” as defined by the C++ standard
[C++,2011]. Therefore, the examples should run on every up-to-date C++ implementation. The
major program fragments in this book were tried using several C++ implementations. Examples
using features only recently adopted into C++ didn’t compile on every implementation. However, I
see no point in mentioning which implementations failed to compile which examples. Such infor-
mation would soon be out of date because implementers are working hard to ensure that their
implementations correctly accept every C++ feature. See Chapter 44 for suggestions on how to
cope with older C++ compilers and with code written for C compilers.

I use C++11 features freely wherever I find them most appropriate. For example, 1 prefer
{}-style initializers and using for type aliases. In places, that usage may startle “old timers.” How-
ever, being startled is often a good way to start reviewing material. On the other hand, I don’t use
new features just because they are new; my ideal is the most elegant expression of the fundamental
ideas — and that may very well be using something that has been in C++ or even in C for ages.

Obviously, if you have to use a pre-C++11 compiler (say, because some of your customers have
not yet upgraded to the current standard), you have to refrain from using novel features. However,
please don’t assume that “the old ways’” are better or simpler just because they are old and familiar.
§44.2 summarizes the differences between C++98 and C++11.
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1.2 The Design of C++

The purpose of a programming language is to help express ideas in code. In that, a programming
language performs two related tasks: it provides a vehicle for the programmer to specify actions to
be executed by the machine, and it provides a set of concepts for the programmer to use when
thinking about what can be done. The first purpose ideally requires a language that is “close to the
machine” so that all important aspects of a machine are handled simply and efficiently in a way
that is reasonably obvious to the programmer. The C language was primarily designed with this in
mind. The second purpose ideally requires a language that is “‘close to the problem to be solved”
so that the concepts of a solution can be expressed directly and concisely. The facilities added to C
to create C++, such as function argument checking, const, classes, constructors and destructors,
exceptions, and templates, were primarily designed with this in mind. Thus, C++ is based on the
idea of providing both

* direct mappings of built-in operations and types to hardware to provide efficient memory

use and efficient low-level operations, and

* affordable and flexible abstraction mechanisms to provide user-defined types with the same

notational support, range of uses, and performance as built-in types.
This was initially achieved by applying ideas from Simula to C. Over the years, further application
of these simple ideals resulted in a far more general, efficient, and flexible set of facilities. The
result supports a synthesis of programming styles that can be simultaneously efficient and elegant.

The design of C++ has focused on programming techniques dealing with fundamental notions
such as memory, mutability, abstraction, resource management, expression of algorithms, error han-
dling, and modularity. Those are the most important concerns of a systems programmer and more
generally of programmers of resource-constrained and high-performance systems.

By defining libraries of classes, class hierarchies, and templates, you can write C++ programs at
a much higher level than the one presented in this book. For example, C++ is widely used in finan-
cial systems, for game development, and for scientific computation (§1.4.5). For high-level appli-
cations programming to be effective and convenient, we need libraries. Using just the bare lan-
guage features makes almost all programming quite painful. That’s true for every general-purpose
language. Conversely, given suitable libraries just about any programming task can be pleasant.

My standard introduction of C++ used to start:

e C++ is a general-purpose programming language with a bias toward systems programming.
This is still true. What has changed over the years is an increase in the importance, power, and
flexibility of C++’s abstraction mechanisms:

*  C++ is a general-purpose programming language providing a direct and efficient model of

hardware combined with facilities for defining lightweight abstractions.
Or terser:

e C++ is alanguage for developing and using elegant and efficient abstractions.

By general-purpose programming language 1 mean a language designed to support a wide variety
of uses. C++ has indeed been used for an incredible variety of uses (from microcontrollers to huge
distributed commercial applications), but the key point is that C++ is not deliberately specialized
for any given application area. No language is ideal for every application and every programmer,
but the ideal for C++ is to support the widest possible range of application areas well.
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By systems programming I mean writing code that directly uses hardware resources, has serious
resource constraints, or closely interacts with code that does. In particular, the implementation of
software infrastructure (e.g., device drivers, communications stacks, virtual machines, operating
systems, operations systems, programming environments, and foundation libraries) is mostly sys-
tems programming. The importance of the “bias toward systems programming” qualification in
my long-standing characterization of C++ is that C++ has not been simplified (compromised) by
ejecting the facilities aimed at the expert-level use of hardware and systems resources in the hope
of making it more suitable for other application areas.

Of course, you can also program in ways that completely hide hardware, use expensive abstrac-
tions (e.g., every object on the free store and every operation a virtual function), use inelegant styles
(e.g., overabstraction), or use essentially no abstractions (‘“‘glorified assembly code’). However,
many languages can do that, so those are not distinguishing characteristics of C++.

The Design and Evolution of C++ book [Stroustrup,1994] (known as D&E) outlines the ideas
and design aims of C++ in greater detail, but two principles should be noted:

* Leave no room for a lower-level language below C++ (except for assembly code in rare
cases). If you can write more efficient code in a lower-level language then that language
will most likely become the systems programming language of choice.

*  What you don’t use you don’t pay for. If programmers can hand-write reasonable code to
simulate a language feature or a fundamental abstraction and provide even slightly better
performance, someone will do so, and many will imitate. Therefore, a language feature and
a fundamental abstraction must be designed not to waste a single byte or a single processor
cycle compared to equivalent alternatives. This is known as the zero-overhead principle.

These are Draconian principles, but essential in some (but obviously not all) contexts. In particular,
the zero-overhead principle repeatedly led C++ to simpler, more elegant, and more powerful facili-
ties than were first envisioned. The STL is an example (§4.1.1, §4.4, §4.5, Chapter 31, Chapter 32,
Chapter 33). These principles have been essential in the effort to raise the level of programming.

1.2.1 Programming Style

Languages features exist to provide support for programming styles. Please don’t look at an indi-
vidual language feature as a solution, but as one building brick from a varied set which can be com-
bined to express solutions.

The general ideals for design and programming can be expressed simply:

* Express ideas directly in code.

* Express independent ideas independently in code.

* Represent relationships among ideas directly in code.

e Combine ideas expressed in code freely — where and only where combinations make sense.

* Express simple ideas simply.
These are ideals shared by many people, but languages designed to support them can differ dramat-
ically. A fundamental reason for that is that a language embodies a set of engineering tradeoffs
reflecting differing needs, tastes, and histories of various individuals and communities. C++’s
answers to the general design challenges were shaped by its origins in systems programming (going
back to C and BCPL [Richards,1980]), its aim to address issues of program complexity through
abstraction (going back to Simula), and its history.
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The C++ language features most directly support four programming styles:

* Procedural programming

* Data abstraction

* Object-oriented programming

* Generic programming
However, the emphasis is on the support of effective combinations of those. The best (most main-
tainable, most readable, smallest, fastest, etc.) solution to most nontrivial problems tends to be one
that combines aspects of these styles.

As is usual with important terms in the computing world, a wide variety of definitions of these
terms are popular in various parts of the computing industry and academia. For example, what I
refer to as a “programming style,” others call a “programming technique” or a “paradigm.” I pre-
fer to use ‘“programming technique” for something more limited and language-specific. I feel
uncomfortable with the word “paradigm” as pretentious and (from Kuhn’s original definition) hav-
ing implied claims of exclusivity.

My ideal is language facilities that can be used elegantly in combination to support a continuum
of programming styles and a wide variety of programming techniques.

* Procedural programming: This is programming focused on processing and the design of
suitable data structures. It is what C was designed to support (and Algol, and Fortran, as
well as many other languages). C++’s support comes in the form of the built-in types, oper-
ators, statements, functions, structs, unions, etc. With minor exceptions, C is a subset of
C++. Compared to C, C++ provides further support for procedural programming in the
form of many additional language constructs and a stricter, more flexible, and more support-
ive type system.

* Data abstraction: This is programming focused on the design of interfaces, hiding imple-
mentation details in general and representations in particular. C++ supports concrete and
abstract classes. The facilities for defining classes with private implementation details, con-
structors and destructors, and associated operations directly support this. The notion of an
abstract class provides direct support for complete data hiding.

* Object-oriented programming: This is programming focused on the design, implementation,
and use of class hierarchies. In addition to allowing the definition lattices of classes, C++
provides a variety of features for navigating class lattices and for simplifying the definition
of a class out of existing ones. Class hierarchies provide run-time polymorphism (§20.3.2,
§21.2) and encapsulation (§20.4, §20.5).

* Generic programming: This is programming focused on the design, implementation, and use
of general algorithms. Here, “general” means that an algorithm can be designed to accept a
wide variety of types as long as they meet the algorithm’s requirements on its arguments.
The template is C++’s main support for generic programming. Templates provide (compile-
time) parametric polymorphism.

Just about anything that increases the flexibility or efficiency of classes improves the support of all
of those styles. Thus, C++ could be (and has been) called class oriented.

Each of these styles of design and programming has contributed to the synthesis that is C++.
Focusing exclusively on one of these styles is a mistake: except for toy examples, doing so leads to
wasted development effort and suboptimal (inflexible, verbose, poorly performing, unmaintainable,
etc.) code.
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I wince when someone characterizes C++ exclusively through one of these styles (e.g., “C++ is
an object-oriented language™) or uses a term (e.g., “hybrid” or “‘mixed paradigm’) to imply that a
more restrictive language would be preferable. The former misses the fact that all the styles men-
tioned have contributed something significant to the synthesis; the latter denies the validity of the
synthesis. The styles mentioned are not distinct alternatives: each contributes techniques to a more
expressive and effective style of programming, and C++ provides direct language support for their
use in combination.

From its inception, the design of C++ aimed at a synthesis of programming and design styles.
Even the earliest published account of C++ [Stroustrup,1982] presents examples that use these dif-
ferent styles in combination and presents language features aimed at supporting such combinations:

* Classes support all of the mentioned styles; all rely on the user representing ideas as user-
defined types or objects of user-defined types.

* Public/private access control supports data abstraction and object-oriented programming by
making a clear distinction between interface and implementation.

*  Member functions, constructors, destructors, and user-defined assignment provide a clean
functional interface to objects as needed by data abstraction and object-oriented program-
ming. They also provide a uniform notation as needed for generic programming. More
general overloading had to wait until 1984 and uniform initialization until 2010.

* Function declarations provide specific statically checked interfaces to member functions as
well as freestanding functions, so they support all of the mentioned styles. They are neces-
sary for overloading. At the time, C lacked ‘““function prototypes” but Simula had function
declarations as well as member functions.

* Generic functions and parameterized types (generated from functions and classes using
macros) support generic programming. Templates had to wait until 1988.

* Base and derived classes provide the foundation for object-oriented programming and some
forms of data abstraction. Virtual functions had to wait until 1983.

* Inlining made the use of these facilities affordable in systems programming and for building
run-time and space efficient libraries.

These early features are general abstraction mechanisms, rather than support for disjoint program-
ming styles. Today’s C++ provides much better support for design and programming based on
lightweight abstraction, but the aim of elegant and efficient code was there from the very beginning.
The developments since 1981 provide much better support for the synthesis of the programming
styles (“paradigms”) originally considered and significantly improve their integration.

The fundamental object in C++ has identity; that is, it is located in a specific location in mem-
ory and can be distinguished from other objects with (potentially) the same value by comparing
addresses. Expressions denoting such objects are called lvalues (§6.4). However, even from the
earliest days of C++’s ancestors [Barron,1963] there have also been objects without identity
(objects for which an address cannot be safely stored for later use). In C++11, this notion of rvalue
has been developed into a notion of a value that can be moved around cheaply (§3.3.2, §6.4.1,
§7.7.2). Such objects are the basis of techniques that resemble what is found in functional pro-
gramming (where the notion of objects with identity is viewed with horror). This nicely comple-
ments the techniques and language features (e.g., lambda expressions) developed primarily for
generic programming. It also solves classical problems related to “‘simple abstract data types,”
such as how to elegantly and efficiently return a large matrix from an operation (e.g., a matrix +).
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From the very earliest days, C++ programs and the design of C++ itself have been concerned
about resource management. The ideal was (and is) for resource management to be

* simple (for implementers and especially for users),

» general (a resource is anything that has to be acquired from somewhere and later released),

» efficient (obey the zero-overhead principle; §1.2),

» perfect (no leaks are acceptable), and

» statically type-safe.
Many important C++ classes, such as the standard library’s vector, string, thread, mutex, unique_ptr,
fstream, and regex, are resource handles. Foundation and application libraries beyond the standard
provided many more examples, such as Matrix and Widget. The initial step in supporting the
notion of resource handles was taken with the provision of constructors and destructors in the very
first “C with Classes” draft. This was soon backed with the ability to control copy by defining
assignment as well as copy constructors. The introduction of move constructors and move assign-
ments (§3.3) in C++11 completes this line of thinking by allowing cheap movement of potentially
large objects from scope to scope (§3.3.2) and to simply control the lifetime of polymorphic or
shared objects (§5.2.1).

The facilities supporting resource management also benefit abstractions that are not resource
handles. Any class that establishes and maintains an invariant relies on a subset of those features.

1.2.2 Type Checking

The connection between the language in which we think/program and the problems and solutions
we can imagine is very close. For this reason, restricting language features with the intent of elimi-
nating programmer errors is, at best, dangerous. A language provides a programmer with a set of
conceptual tools; if these are inadequate for a task, they will be ignored. Good design and the
absence of errors cannot be guaranteed merely by the presence or absence of specific language fea-
tures. However, the language features and the type system are provided for the programmer to pre-
cisely and concisely represent a design in code.

The notion of static types and compile-time type checking is central to effective use of C++.
The use of static types is key to expressiveness, maintainability, and performance. Following Sim-
ula, the design of user-defined types with interfaces that are checked at compile time is key to the
expressiveness of C++. The C++ type system is extensible in nontrivial ways (Chapter 3, Chapter
16, Chapter 18, Chapter 19, Chapter 21, Chapter 23, Chapter 28, Chapter 29), aiming for equal sup-
port for built-in types and user-defined types.

C++ type-checking and data-hiding features rely on compile-time analysis of programs to pre-
vent accidental corruption of data. They do not provide secrecy or protection against someone who
is deliberately breaking the rules: C++ protects against accident, not against fraud. They can, how-
ever, be used freely without incurring run-time or space overheads. The idea is that to be useful, a
language feature must not only be elegant, it must also be affordable in the context of a real-world
program.

C++’s static type system is flexible, and the use of simple user-defined types implies little, if
any overhead. The aim is to support a style of programming that represents distinct ideas as dis-
tinct types, rather than just using generalizations, such as integer, floating-point number, string,
“raw memory,” and “object,” everywhere. A type-rich style of programming makes code more
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readable, maintainable, and analyzable. A trivial type system allows only trivial analysis, whereas
a type-rich style of programming opens opportunities for nontrivial error detection and optimiza-
tion. C++ compilers and development tools support such type-based analysis [Stroustrup,2012].

Maintaining most of C as a subset and preserving the direct mapping to hardware needed for the
most demanding low-level systems programming tasks implies the ability to break the static type
system. However, my ideal is (and always was) complete type safety. In this, I agree with Dennis
Ritchie, who said, “C is a strongly typed, weakly checked language.” Note that Simula was both
type-safe and flexible. In fact, my ideal when I started on C++ was “Algol68 with Classes” rather
than “C with Classes.” However, the list of solid reasons against basing my work on type-safe
Algol68 [Woodward,1974] was long and painful. So, perfect type safety is an ideal that C++ as a
language can only approximate. But it is an ideal that C++ programmers (especially library
builders) can strive for. Over the years, the set of language features, standard-library components,
and techniques supporting that ideal has grown. Outside of low-level sections of code (hopefully
isolated by type-safe interfaces), code that interfaces to code obeying different language conven-
tions (e.g., an operating system call interface), and the implementations of fundamental abstractions
(e.g., string and vector), there is now little need for type-unsafe code.

1.2.3 C Compatibility

C++ was developed from the C programming language and, with few exceptions, retains C as a
subset. The main reasons for relying on C were to build on a proven set of low-level language
facilities and to be part of a technical community. Great importance was attached to retaining a
high degree of compatibility with C [Koenig,1989] [Stroustrup,1994] (Chapter 44); this (unfortu-
nately) precluded cleaning up the C syntax. The continuing, more or less parallel evolution of C
and C++ has been a constant source of concern and requires constant attention [Stroustrup,2002].
Having two committees devoted to keeping two widely used languages ‘““‘as compatible as possible”
is not a particularly good way of organizing work. In particular, there are differences in opinion as
to the value of compatibility, differences in opinion on what constitutes good programming, and
differences in opinion on what support is needed for good programming. Just keeping up commu-
nication between the committees is a large amount of work.

One hundred percent C/C++ compatibility was never a goal for C++ because that would com-
promise type safety and the smooth integration of user-defined and built-in types. However, the
definition of C++ has been repeatedly reviewed to remove gratuitous incompatibilities; C++ is now
more compatible with C than it was originally. C++98 adopted many details from C89 (§44.3.1).
When C then evolved from C89 [C,1990] to C99 [C,1999], C++ adopted almost all of the new fea-
tures, leaving out VLAs (variable-length arrays) as a misfeature and designated initializers as
redundant. C’s facilities for low-level systems programming tasks are retained and enhanced; for
example, see inlining (§3.2.1.1, §12.1.5, §16.2.8) and constexpr (§2.2.3, §10.4, §12.1.6).

Conversely, modern C has adopted (with varying degrees of faithfulness and effectiveness)
many features from C++ (e.g., const, function prototypes, and inlining; see [Stroustrup,2002]).

The definition of C++ has been revised to ensure that a construct that is both legal C and legal
C++ has the same meaning in both languages (§44.3).

One of the original aims for C was to replace assembly coding for the most demanding systems
programming tasks. When C++ was designed, care was taken not to compromise the gains in this
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area. The difference between C and C++ is primarily in the degree of emphasis on types and struc-
ture. C is expressive and permissive. Through extensive use of the type system, C++ is even more
expressive without loss of performance.

Knowing C is not a prerequisite for learning C++. Programming in C encourages many tech-
niques and tricks that are rendered unnecessary by C++ language features. For example, explicit
type conversion (casting) is less frequently needed in C++ than it is in C (§1.3.3). However, good
C programs tend to be C++ programs. For example, every program in Kernighan and Ritchie, The
C Programming Language, Second Edition [Kernighan,1988], is a C++ program. Experience with
any statically typed language will be a help when learning C++.

1.2.4 Language, Libraries, and Systems

The C++ fundamental (built-in) types, operators, and statements are those that computer hardware
deals with directly: numbers, characters, and addresses. C++ has no built-in high-level data types
and no high-level primitive operations. For example, the C++ language does not provide a matrix
type with an inversion operator or a string type with a concatenation operator. If a user wants such
a type, it can be defined in the language itself. In fact, defining a new general-purpose or applica-
tion-specific type is the most fundamental programming activity in C++. A well-designed user-
defined type differs from a built-in type only in the way it is defined, not in the way it is used. The
C++ standard library (Chapter 4, Chapter 5, Chapter 30, Chapter 31, etc.) provides many examples
of such types and their uses. From a user’s point of view, there is little difference between a built-in
type and a type provided by the standard library. Except for a few unfortunate and unimportant his-
torical accidents, the C++ standard library is written in C++. Writing the C++ standard library in
C++ is a crucial test of the C++ type system and abstraction mechanisms: they must be (and are)
sufficiently powerful (expressive) and efficient (affordable) for the most demanding systems pro-
gramming tasks. This ensures that they can be used in large systems that typically consist of layer
upon layer of abstraction.

Features that would incur run-time or memory overhead even when not used were avoided. For
example, constructs that would make it necessary to store ‘“housekeeping information” in every
object were rejected, so if a user declares a structure consisting of two 16-bit quantities, that struc-
ture will fit into a 32-bit register. Except for the new, delete, typeid, dynamic_cast, and throw opera-
tors, and the try-block, individual C++ expressions and statements need no run-time support. This
can be essential for embedded and high-performance applications. In particular, this implies that
the C++ abstraction mechanisms are usable for embedded, high-performance, high-reliability, and
real-time applications. So, programmers of such applications don’t have to work with a low-level
(error-prone, impoverished, and unproductive) set of language features.

C++ was designed to be used in a traditional compilation and run-time environment: the C pro-
gramming environment on the UNIX system [UNIX,1985]. Fortunately, C++ was never restricted
to UNIX; it simply used UNIX and C as a model for the relationships among language, libraries,
compilers, linkers, execution environments, etc. That minimal model helped C++ to be successful
on essentially every computing platform. There are, however, good reasons for using C++ in envi-
ronments that provide significantly more run-time support. Facilities such as dynamic loading,
incremental compilation, and a database of type definitions can be put to good use without affecting
the language.
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Not every piece of code can be well structured, hardware-independent, easy to read, etc. C++
possesses features that are intended for manipulating hardware facilities in a direct and efficient
way without concerns for safety or ease of comprehension. It also possesses facilities for hiding
such code behind elegant and safe interfaces.

Naturally, the use of C++ for larger programs leads to the use of C++ by groups of program-
mers. C++’s emphasis on modularity, strongly typed interfaces, and flexibility pays off here. How-
ever, as programs get larger, the problems associated with their development and maintenance shift
from being language problems to being more global problems of tools and management.

This book emphasizes techniques for providing general-purpose facilities, generally useful
types, libraries, etc. These techniques will serve programmers of small programs as well as pro-
grammers of large ones. Furthermore, because all nontrivial programs consist of many semi-inde-
pendent parts, the techniques for writing such parts serve programmers of all applications.

I use the implementation and use of standard-library components, such as vector, as examples.
This introduces library components and their underlying design concepts and implementation tech-
niques. Such examples show how programmers might design and implement their own libraries.
However, if the standard library provides a component that addresses a problem, it is almost always
better to use that component than to build your own. Even if the standard component is arguably
slightly inferior to a home-built component for a particular problem, the standard component is
likely to be more widely applicable, more widely available, and more widely known. Over the
longer term, the standard component (possibly accessed through a convenient custom interface) is
likely to lower long-term maintenance, porting, tuning, and education costs.

You might suspect that specifying a program by using a more detailed type structure would
increase the size of the program source text (or even the size of the generated code). With C++,
this is not so. A C++ program declaring function argument types, using classes, etc., is typically a
bit shorter than the equivalent C program not using these facilities. Where libraries are used, a C++
program will appear much shorter than its C equivalent, assuming, of course, that a functioning C
equivalent could have been built.

C++ supports systems programming. This implies that C++ code is able to effectively interop-
erate with software written in other languages on a system. The idea of writing all software in a
single language is a fantasy. From the beginning, C++ was designed to interoperate simply and
efficiently with C, assembler, and Fortran. By that, I meant that a C++, C, assembler, or Fortran
function could call functions in the other languages without extra overhead or conversion of data
structures passed among them.

C++ was designed to operate within a single address space. The use of multiple processes and
multiple address spaces relied on (extralinguistic) operating system support. In particular, I
assumed that a C++ programmer would have the operating systems command language available
for composing processes into a system. Initially, I relied on the UNIX Shell for that, but just about
any ‘“‘scripting language” will do. Thus, C++ provided no support for multiple address spaces and
no support for multiple processes, but it was used for systems relying on those features from the
earliest days. C++ was designed to be part of large, concurrent, multilanguage systems.
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1.3 Learning C++

No programming language is perfect. Fortunately, a programming language does not have to be
perfect to be a good tool for building great systems. In fact, a general-purpose programming lan-
guage cannot be perfect for all of the many tasks to which it is put. What is perfect for one task is
often seriously flawed for another because perfection in one area implies specialization. Thus, C++
was designed to be a good tool for building a wide variety of systems and to allow a wide variety of
ideas to be expressed directly.

Not everything can be expressed directly using the built-in features of a language. In fact, that
isn’t even the ideal. Language features exist to support a variety of programming styles and tech-
niques. Consequently, the task of learning a language should focus on mastering the native and nat-
ural styles for that language — not on understanding of every little detail of every language feature.
Writing programs is essential; understanding a programming language is not just an intellectual
exercise. Practical application of ideas is necessary.

In practical programming, there is little advantage in knowing the most obscure language fea-
tures or using the largest number of features. A single language feature in isolation is of little inter-
est. Only in the context provided by techniques and by other features does the feature acquire
meaning and interest. Thus, when reading the following chapters, please remember that the real
purpose of examining the details of C++ is to be able to use language features and library facilities
in concert to support good programming styles in the context of sound designs.

No significant system is built exclusively in terms of the language features themselves. We
build and use libraries to simplify the task of programming and to increase the quality of our sys-
tems. We use libraries to improve maintainability, portability, and performance. Fundamental
application concepts are represented as abstractions (e.g., classes, templates, and class hierarchies)
in libraries. Many of the most fundamental programming concepts are represented in the standard
library. Thus, learning the standard library is an integral part of learning C++. The standard library
is the repository of much hard-earned knowledge of how to use C++ well.

C++ is widely used for teaching and research. This has surprised some who — correctly — point
out that C++ isn’t the smallest or cleanest language ever designed. It is, however:

» Sufficiently clean for successfully teaching basic design and programming concepts

» Sufficiently comprehensive to be a vehicle for teaching advanced concepts and techniques

» Sufficiently realistic, efficient, and flexible for demanding projects

» Sufficiently commercial to be a vehicle for putting what is learned into nonacademic use

» Sufficiently available for organizations and collaborations relying on diverse development

and execution environments
C++ is a language that you can grow with.

The most important thing to do when learning C++ is to focus on fundamental concepts (such
as type safety, resource management, and invariants) and programming techniques (such as
resource management using scoped objects and the use of iterators in algorithms) and not get lost in
language-technical details. The purpose of learning a programming language is to become a better
programmer, that is, to become more effective at designing and implementing new systems and at
maintaining old ones. For this, an appreciation of programming and design techniques is far more
important than understanding all the details. The understanding of technical details comes with
time and practice.
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C++ programming is based on strong static type checking, and most techniques aim at achiev-
ing a high level of abstraction and a direct representation of the programmer’s ideas. This can usu-
ally be done without compromising run-time and space efficiency compared to lower-level tech-
niques. To gain the benefits of C++, programmers coming to it from a different language must
learn and internalize idiomatic C++ programming style and technique. The same applies to pro-
grammers used to earlier and less expressive versions of C++.

Thoughtlessly applying techniques effective in one language to another typically leads to awk-
ward, poorly performing, and hard-to-maintain code. Such code is also most frustrating to write
because every line of code and every compiler error message reminds the programmer that the lan-
guage used differs from “the old language.” You can write in the style of Fortran, C, Lisp, Java,
etc., in any language, but doing so is neither pleasant nor economical in a language with a different
philosophy. Every language can be a fertile source of ideas about how to write C++ programs.
However, ideas must be transformed into something that fits with the general structure and type
system of C++ in order to be effective in C++. Over the basic type system of a language, only
Pyrrhic victories are possible.

In the continuing debate on whether one needs to learn C before C++, I am firmly convinced
that it is best to go directly to C++. C++ is safer and more expressive, and it reduces the need to
focus on low-level techniques. It is easier for you to learn the trickier parts of C that are needed to
compensate for its lack of higher-level facilities after you have been exposed to the common subset
of C and C++ and to some of the higher-level techniques supported directly in C++. Chapter 44 is
a guide for programmers going from C++ to C, say, to deal with legacy code. My opinion on how
to teach C++ to novices is represented by [Stroustrup,2008].

There are several independently developed implementations of C++. They are supported by a
wealth of tools, libraries, and software development environments. To help master all of this you
can find textbooks, manuals, and a bewildering variety of online resources. If you plan to use C++
seriously, I strongly suggest that you obtain access to several such sources. Each has its own
emphasis and bias, so use at least two.

1.3.1 Programming in C++

The question “How does one write good programs in C++?” is very similar to the question “How
does one write good English prose?”” There are two answers: “Know what you want to say” and
“Practice. Imitate good writing.” Both appear to be as appropriate for C++ as they are for English
— and as hard to follow.

The main ideal for C++ programming — as for programming in most higher-level languages — is
to express concepts (ideas, notions, etc.) from a design directly in code. We try to ensure that the
concepts we talk about, represent with boxes and arrows on our whiteboard, and find in our (non-
programming) textbooks have direct and obvious counterparts in our programs:

[1] Represent ideas directly in code.

[2] Represent relationships among ideas directly in code (e.g., hierarchical, parametric, and

ownership relationships).

[3] Represent independent ideas independently in code.

[4] Keep simple things simple (without making complex things impossible).
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More specifically:
[S] Prefer statically type-checked solutions (when applicable).
[6] Keep information local (e.g., avoid global variables, minimize the use of pointers).
[7] Don’t overabstract (i.e., don’t generalize, introduce class hierarchies, or parameterize
beyond obvious needs and experience).
More specific suggestions are listed in §1.3.2.

1.3.2 Suggestions for C++ Programmers

By now, many people have been using C++ for a decade or two. Many more are using C++ in a
single environment and have learned to live with the restrictions imposed by early compilers and
first-generation libraries. Often, what an experienced C++ programmer has failed to notice over the
years is not the introduction of new features as such, but rather the changes in relationships
between features that make fundamental new programming techniques feasible. In other words,
what you didn’t think of when first learning C++ or found impractical just might be a superior
approach today. You find out only by reexamining the basics.

Read through the chapters in order. If you already know the contents of a chapter, you can be
done in minutes. If you don’t already know the contents, you’ll have learned something unex-
pected. Ilearned a fair bit writing this book, and I suspect that hardly any C++ programmer knows
every feature and technique presented. Furthermore, to use the language well, you need a perspec-
tive that brings order to the set of features and techniques. Through its organization and examples,
this book offers such a perspective.

Take the opportunity offered by the new C++11 facilities to modernize your design and pro-
gramming techniques:

[1]  Use constructors to establish invariants (§2.4.3.2, §13.4, §17.2.1).

[2]  Use constructor/destructor pairs to simplify resource management (RAII; §5.2, §13.3).
[3] Avoid “naked” new and delete (§3.2.1.2, §11.2.1).
] Use containers and algorithms rather than built-in arrays and ad hoc code (§4.4, §4.5,
§7.4, Chapter 32).
[S] Prefer standard-library facilities to locally developed code (§1.2.4).
[6] Use exceptions, rather than error codes, to report errors that cannot be handled locally
(§2.4.3, §13.1).

[71 Use move semantics to avoid copying large objects (§3.3.2, §17.5.2).

[8] Use unique_ptr to reference objects of polymorphic type (§5.2.1).

[9] Use shared_ptr to reference shared objects, that is, objects without a single owner that is

responsible for their destruction (§5.2.1).

[10] Use templates to maintain static type safety (eliminate casts) and avoid unnecessary use

of class hierarchies (§27.2).
It might also be a good idea to review the advice for C and Java programmers (§1.3.3, §1.3.4).

1.3.3 Suggestions for C Programmers

The better one knows C, the harder it seems to be to avoid writing C++ in C style, thereby losing
many of the potential benefits of C++. Please take a look at Chapter 44, which describes the differ-
ences between C and C++.
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(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Don’t think of C++ as C with a few features added. C++ can be used that way, but only
suboptimally. To get really major advantages from C++ as compared to C, you need to
apply different design and implementation styles.

Don’t write C in C++; that is often seriously suboptimal for both maintenance and perfor-
mance.

Use the C++ standard library as a teacher of new techniques and programming styles.
Note the difference from the C standard library (e.g., = rather than strcpy() for copying
and == rather than stremp() for comparing).

Macro substitution is almost never necessary in C++. Use const (§7.5), constexpr (§2.2.3,
§10.4), enum or enum class (§8.4) to define manifest constants, inline (§12.1.5) to avoid
function-calling overhead, templates (§3.4, Chapter 23) to specify families of functions
and types, and namespaces (§2.4.2, §14.3.1) to avoid name clashes.

Don’t declare a variable before you need it, and initialize it immediately. A declaration
can occur anywhere a statement can (§9.3), in for-statement initializers (§9.5), and in con-
ditions (§9.4.3).

Don’t use malloc(). The new operator (§11.2) does the same job better, and instead of
realloc(), try a vector (§3.4.2). Don’t just replace malloc() and free() with “naked” new and
delete (§3.2.1.2, §11.2.1).

Avoid void+, unions, and casts, except deep within the implementation of some function
or class. Their use limits the support you can get from the type system and can harm per-
formance. In most cases, a cast is an indication of a design error. If you must use an
explicit type conversion, try using one of the named casts (e.g., static_cast; §11.5.2) for a
more precise statement of what you are trying to do.

Minimize the use of arrays and C-style strings. C++ standard-library strings (§4.2), arrays
(§8.2.4), and vectors (§4.4.1) can often be used to write simpler and more maintainable
code compared to the traditional C style. In general, try not to build yourself what has
already been provided by the standard library.

Avoid pointer arithmetic except in very specialized code (such as a memory manager) and
for simple array traversal (e.g., ++p).

Do not assume that something laboriously written in C style (avoiding C++ features such
as classes, templates, and exceptions) is more efficient than a shorter alternative (e.g.,
using standard-library facilities). Often (but of course not always), the opposite is true.

To obey C linkage conventions, a C++ function must be declared to have C linkage (§15.2.5).

1.3.4 Suggestions for Java Programmers

C++ and Java are rather different languages with similar syntaxes. Their aims are significantly dif-
ferent and so are many of their application domains. Java is not a direct successor to C++ in the
sense of a language that can do the same as its predecessor, but better and also more. To use C++
well, you need to adopt programming and design techniques appropriate to C++, rather than trying
to write Java in C++. It is not just an issue of remembering to delete objects that you create with
new because you can’t rely on the presence of a garbage collector:

(1]

Don’t simply mimic Java style in C++; that is often seriously suboptimal for both main-
tainability and performance.
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[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

Use the C++ abstraction mechanisms (e.g., classes and templates): don’t fall back to a C
style of programming out of a false feeling of familiarity.

Use the C++ standard library as a teacher of new techniques and programming styles.
Don’t immediately invent a unique base for all of your classes (an Object class). Typi-
cally, you can do better without it for many/most classes.

Minimize the use of reference and pointer variables: use local and member variables
(83.2.1.2,85.2,§16.3.4, §17.1).

Remember: a variable is never implicitly a reference.

Think of pointers as C++’s equivalent to Java references (C++ references are more lim-
ited; there is no reseating of C++ references).

A function is not virtual by default. Not every class is meant for inheritance.

Use abstract classes as interfaces to class hierarchies; avoid “‘brittle base classes,” that is,
base classes with data members.

Use scoped resource management (‘‘Resource Acquisition Is Initialization’’; RAII) when-
ever possible.

Use a constructor to establish a class invariant (and throw an exception if it can’t).

If a cleanup action is needed when an object is deleted (e.g., goes out of scope), use a de-
structor for that. Don’t imitate finally (doing so is more ad hoc and in the longer run far
more work than relying on destructors).

Avoid ‘“‘naked” new and delete; instead, use containers (e.g., vector, string, and map) and
handle classes (e.g., lock and unique_ptr).

Use freestanding functions (nonmember functions) to minimize coupling (e.g., see the
standard algorithms), and use namespaces (§2.4.2, Chapter 14) to limit the scope of free-
standing functions.

Don’t use exception specifications (except noexcept; §13.5.1.1).

A C++ nested class does not have access to an object of the enclosing class.

C++ offers only the most minimal run-time reflection: dynamic_cast and typeid (Chapter
22). Rely more on compile-time facilities (e.g., compile-time polymorphism; Chapter 27,
Chapter 28).

Most of this advice applies equally to C# programmers.

1.4 History

I invented C++, wrote its early definitions, and produced its first implementation. I chose and for-
mulated the design criteria for C++, designed its major language features, developed or helped to
develop many of the early libraries, and was responsible for the processing of extension proposals
in the C++ standards committee.

C++ was designed to provide Simula’s facilities for program organization [Dahl,1970]
[Dahl, 1972] together with C’s efficiency and flexibility for systems programming [Kernighan,1978]
[Kernighan,1988]. Simula is the initial source of C++’s abstraction mechanisms. The class con-
cept (with derived classes and virtual functions) was borrowed from it. However, templates and
exceptions came to C++ later with different sources of inspiration.
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The evolution of C++ was always in the context of its use. I spent a lot of time listening to
users and seeking out the opinions of experienced programmers. In particular, my colleagues at
AT&T Bell Laboratories were essential for the growth of C++ during its first decade.

This section is a brief overview; it does not try to mention every language feature and library
component. Furthermore, it does not go into details. For more information, and in particular for
more names of people who contributed, see [Stroustrup,1993], [Stroustrup,2007], and [Strous-
trup,1994]. My two papers from the ACM History of Programming Languages conference and my
Design and Evolution of C++ book (known as “D&E”) describe the design and evolution of C++
in detail and document influences from other programming languages.

Most of the documents produced as part of the ISO C++ standards effort are available online
[WG21]. In my FAQ, I try to maintain a connection between the standard facilities and the people
who proposed and refined those facilities [Stroustrup,2010]. C++ is not the work of a faceless,
anonymous committee or of a supposedly omnipotent “dictator for life”’; it is the work of many
dedicated, experienced, hard-working individuals.

1.4.1 Timeline

The work that led to C++ started in the fall of 1979 under the name *“C with Classes.” Here is a
simplified timeline:

1979 Work on “C with Classes” started. The initial feature set included classes and derived
classes, public/private access control, constructors and destructors, and function declara-
tions with argument checking. The first library supported non-preemptive concurrent
tasks and random number generators.

1984 ““C with Classes” was renamed to C++. By then, C++ had acquired virtual functions,
function and operator overloading, references, and the I/O stream and complex number
libraries.

1985 First commercial release of C++ (October 14). The library included I/O streams, com-
plex numbers, and tasks (nonpreemptive scheduling).

1985 The C++ Programming Language (“TC++PL,” October 14) [Stroustrup,1986].

1989 The Annotated C++ Reference Manual (‘‘the ARM”).

1991 The C++ Programming Language, Second Edition [Stroustrup,1991], presenting generic
programming using templates and error handling based on exceptions (including the
“Resource Acquisition Is Initialization™ general resource management idiom).

1997 The C++ Programming Language, Third Edition [Stroustrup,1997] introduced ISO C++,
including namespaces, dynamic_cast, and many refinements of templates. The standard
library added the STL framework of generic containers and algorithms.

1998 1SO C++ standard.

2002 Work on a revised standard, colloquially named C++0x, started.

2003 A “bug fix” revision of the ISO C++ standard was issued. A C++ Technical Report
introduced new standard-library components, such as regular expressions, unordered con-
tainers (hash tables), and resource management pointers, which later became part of
C++0x.

2006 An ISO C++ Technical Report on Performance was issued to answer questions of cost,
predictability, and techniques, mostly related to embedded systems programming.
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2009 C++0x was feature complete. It provided uniform initialization, move semantics, vari-
adic template arguments, lambda expressions, type aliases, a memory model suitable for
concurrency, and much more. The standard library added several components, including
threads, locks, and most of the components from the 2003 Technical Report.

2011 ISO C++11 standard was formally approved.

2012 The first complete C++11 implementations emerged.

2012 Work on future ISO C++ standards (referred to as C++14 and C++17) started.

2013 The C++ Programming Language, Fourth Edition introduced C++11.

During development, C++11 was known as C++0x. As is not uncommon in large projects, we
were overly optimistic about the completion date.

1.4.2 The Early Years

I originally designed and implemented the language because I wanted to distribute the services of a
UNIX kernel across multiprocessors and local-area networks (what are now known as multicores
and clusters). For that, I needed some event-driven simulations for which Simula would have been
ideal, except for performance considerations. I also needed to deal directly with hardware and pro-
vide high-performance concurrent programming mechanisms for which C would have been ideal,
except for its weak support for modularity and type checking. The result of adding Simula-style
classes to C, “C with Classes,” was used for major projects in which its facilities for writing pro-
grams that use minimal time and space were severely tested. It lacked operator overloading, refer-
ences, virtual functions, templates, exceptions, and many, many details [Stroustrup,1982]. The first
use of C++ outside a research organization started in July 1983.

The name C++ (pronounced ‘“‘see plus plus™) was coined by Rick Mascitti in the summer of
1983 and chosen as the replacement for “C with Classes” by me. The name signifies the evolu-
tionary nature of the changes from C; “++” is the C increment operator. The slightly shorter name
“C+” is a syntax error; it had also been used as the name of an unrelated language. Connoisseurs
of C semantics find C++ inferior to ++C. The language was not called D, because it was an exten-
sion of C, because it did not attempt to remedy problems by removing features, and because there
already existed several would-be C successors named D. For yet another interpretation of the name
C++, see the appendix of [Orwell,1949].

C++ was designed primarily so that my friends and I would not have to program in assembler,
C, or various then-fashionable high-level languages. Its main purpose was to make writing good
programs easier and more pleasant for the individual programmer. In the early years, there was no
C++ paper design; design, documentation, and implementation went on simultaneously. There was
no “C++ project” either, or a “C++ design committee.” Throughout, C++ evolved to cope with
problems encountered by users and as a result of discussions among my friends, my colleagues,
and me.

1.4.2.1 Language Features and Library Facilities

The very first design of C++ (then called “C with Classes’) included function declarations with
argument type checking and implicit conversions, classes with the public/private distinction between
the interface and the implementation, derived classes, and constructors and destructors. I used
macros to provide primitive parameterization. This was in use by mid-1980. Late that year, I was
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able to present a set of language facilities supporting a coherent set of programming styles; see
§1.2.1. In retrospect, I consider the introduction of constructors and destructors most significant.
In the terminology of the time, “‘a constructor creates the execution environment for the member
functions and the destructor reverses that.” Here is the root of C++’s strategies for resource man-
agement (causing a demand for exceptions) and the key to many techniques for making user code
short and clear. If there were other languages at the time that supported multiple constructors capa-
ble of executing general code, I didn’t (and don’t) know of them. Destructors were new in C++.

C++ was released commercially in October 1985. By then, I had added inlining (§12.1.5,
§16.2.8), consts (§2.2.3, §7.5, §16.2.9), function overloading (§12.3), references (§7.7), operator
overloading (§3.2.1.1, Chapter 18, Chapter 19), and virtual functions (§3.2.3, §20.3.2). Of these
features, support for run-time polymorphism in the form of virtual functions was by far the most
controversial. I knew its worth from Simula but found it impossible to convince most people in the
systems programming world of its value. Systems programmers tended to view indirect function
calls with suspicion, and people acquainted with other languages supporting object-oriented pro-
gramming had a hard time believing that virtual functions could be fast enough to be useful in sys-
tems code. Conversely, many programmers with an object-oriented background had (and many still
have) a hard time getting used to the idea that you use virtual function calls only to express a choice
that must be made at run time. The resistance to virtual functions may be related to a resistance to
the idea that you can get better systems through more regular structure of code supported by a pro-
gramming language. Many C programmers seem convinced that what really matters is complete
flexibility and careful individual crafting of every detail of a program. My view was (and is) that
we need every bit of help we can get from languages and tools: the inherent complexity of the sys-
tems we are trying to build is always at the edge of what we can express.

Much of the design of C++ was done on the blackboards of my colleagues. In the early years,
the feedback from Stu Feldman, Alexander Fraser, Steve Johnson, Brian Kernighan, Doug Mcllroy,
and Dennis Ritchie was invaluable.

In the second half of the 1980s, I continued to add language features in response to user com-
ments. The most important of those were templates [Stroustrup,1988] and exception handling
[Koenig,1990], which were considered experimental at the time the standards effort started. In the
design of templates, I was forced to decide among flexibility, efficiency, and early type checking.
At the time, nobody knew how to simultaneously get all three, and to compete with C-style code
for demanding systems applications, I felt that I had to choose the first two properties. In retro-
spect, I think the choice was the correct one, and the search for better type checking of templates
continues [Gregor,2006] [Sutton,2011] [Stroustrup,2012a]. The design of exceptions focused on
multilevel propagation of exceptions, the passing of arbitrary information to an error handler, and
the integrations between exceptions and resource management by using local objects with destruc-
tors to represent and release resources (what I clumsily called “Resource Acquisition Is Initial-
ization’’; §13.3).

I generalized C++’s inheritance mechanisms to support multiple base classes [Strous-
trup,1987a]. This was called multiple inheritance and was considered difficult and controversial. T
considered it far less important than templates or exceptions. Multiple inheritance of abstract
classes (often called interfaces) is now universal in languages supporting static type checking and
object-oriented programming.
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The C++ language evolved hand in hand with some of the key library facilities presented in this
book. For example, I designed the complex [Stroustrup,1984], vector, stack, and (I/O) stream
[Stroustrup,1985] classes together with the operator overloading mechanisms. The first string and
list classes were developed by Jonathan Shopiro and me as part of the same effort. Jonathan’s
string and list classes were the first to see extensive use as part of a library. The string class from
the standard C++ library has its roots in these early efforts. The task library described in [Strous-
trup,1987b] was part of the first “C with Classes” program ever written in 1980. I wrote it and its
associated classes to support Simula-style simulations. Unfortunately, we had to wait until 2011
(30 years!) to get concurrency support standardized and universally available (§1.4.4.2, §5.3, Chap-
ter 41). The development of the template facility was influenced by a variety of vector, map, list,
and sort templates devised by Andrew Koenig, Alex Stepanov, me, and others.

C++ grew up in an environment with a multitude of established and experimental programming
languages (e.g., Ada [Ichbiah,1979], Algol 68 [Woodward,1974], and ML [Paulson,1996]). At the
time, I was comfortable in about 25 languages, and their influences on C++ are documented in
[Stroustrup,1994] and [Stroustrup,2007]. However, the determining influences always came from
the applications I encountered. That was a deliberate policy to have the development of C++
“problem driven” rather than imitative.

1.4.3 The 1998 Standard

The explosive growth of C++ use caused some changes. Sometime during 1987, it became clear
that formal standardization of C++ was inevitable and that we needed to start preparing the ground
for a standardization effort [Stroustrup,1994]. The result was a conscious effort to maintain contact
between implementers of C++ compilers and major users. This was done through paper and elec-
tronic mail and through face-to-face meetings at C++ conferences and elsewhere.

AT&T Bell Labs made a major contribution to C++ and its wider community by allowing me to
share drafts of revised versions of the C++ reference manual with implementers and users.
Because many of those people worked for companies that could be seen as competing with AT&T,
the significance of this contribution should not be underestimated. A less enlightened company
could have caused major problems of language fragmentation simply by doing nothing. As it hap-
pened, about a hundred individuals from dozens of organizations read and commented on what
became the generally accepted reference manual and the base document for the ANSI C++ stan-
dardization effort. Their names can be found in The Annotated C++ Reference Manual (*“‘the
ARM?”) [Ellis,1989]. The X3J16 committee of ANSI was convened in December 1989 at the ini-
tiative of Hewlett-Packard. In June 1991, this ANSI (American national) standardization of C++
became part of an ISO (international) standardization effort for C++ and named WG21. From
1990, these joint C++ standards committees have been the main forum for the evolution of C++ and
the refinement of its definition. I served on these committees throughout. In particular, as the
chairman of the working group for extensions (later called the evolution group), I was directly
responsible for handling proposals for major changes to C++ and the addition of new language fea-
tures. An initial draft standard for public review was produced in April 1995. The first ISO C++
standard (ISO/IEC 14882-1998) [C++,1998] was ratified by a 22-0 national vote in 1998. A “bug
fix release” of this standard was issued in 2003, so you sometimes hear people refer to C++03, but
that is essentially the same language as C++98.
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1.4.3.1 Language Features

By the time the ANSI and ISO standards efforts started, most major language features were in place
and documented in the ARM [Ellis, 1989]. Consequently, most of the work involved refinement of
features and their specification. The template mechanisms, in particular, benefited from much
detailed work. Namespaces were introduced to cope with the increased size of C++ programs and
the increased number of libraries. At the initiative of Dmitry Lenkov from Hewett-Packard, mini-
mal facilities to use run-time type information (RTTI; Chapter 22) were introduced. I had left such
facilities out of C++ because I had found them seriously overused in Simula. I tried to get a facility
for optional conservative garbage collection accepted, but failed. We had to wait until the 2011
standard for that.

Clearly, the 1998 language was far superior in features and in particular in the detail of specifi-
cation to the 1989 language. However, not all changes were improvements. In addition to the
inevitable minor mistakes, two major features were added that in retrospect should not have been:

* Exception specifications provide run-time enforcement of which exceptions a function is
allowed to throw. They were added at the energetic initiative of people from Sun Microsys-
tems. Exception specifications turned out to be worse than useless for improving readabil-
ity, reliability, and performance. They are deprecated (scheduled for future removal) in the
2011 standard. The 2011 standard introduced noexcept (§13.5.1.1) as a simpler solution to
many of the problems that exception specifications were supposed to address.

» It was always obvious that separate compilation of templates and their uses would be ideal
[Stroustrup,1994]. How to achieve that under the constraints from real-world uses of tem-
plates was not at all obvious. After a long debate in the committee, a compromise was
reached and something called export templates were specified as part of the 1998 standard.
It was not an elegant solution to the problem, only one vendor implemented export (the Edi-
son Design Group), and the feature was removed from the 2011 standard. We are still look-
ing for a solution. My opinion is that the fundamental problem is not separate compilation
in itself, but that the distinction between interface and implementation of a template is not
well specified. Thus, export solved the wrong problem. In the future, language support for
“concepts” (§24.3) may help by providing precise specification of template requirements.
This is an area of active research and design [Sutton,2011] [Stroustrup,2012a].

1.4.3.2 The Standard Library

The greatest and most important innovation in the 1998 standard was the inclusion of the STL, a
framework of algorithms and containers, in the standard library (§4.4, §4.5, Chapter 31, Chapter
32, Chapter 33). It was the work of Alex Stepanov (with Dave Musser, Meng Le, and others) based
on more than a decade’s work on generic programming. Andrew Koenig, Beman Dawes, and I did
much to help get the STL accepted [Stroustrup,2007]. The STL has been massively influential
within the C++ community and beyond.

Except for the STL, the standard library was a bit of a hodgepodge of components, rather than a
unified design. I had failed to ship a sufficiently large foundation library with Release 1.0 of C++
[Stroustrup,1993], and an unhelpful (non-research) AT&T manager had prevented my colleagues
and me from rectifying that mistake for Release 2.0. That meant that every major organization
(such as Borland, IBM, Microsoft, and Texas Instruments) had its own foundation library by the
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time the standards work started. Thus, the committee was limited to a patchwork of components
based on what had always been available (e.g., the complex library), what could be added without
interfering with the major vendor’s libraries, and what was needed to ensure cooperation among
different nonstandard libraries.

The standard-library string (§4.2, Chapter 36) had its origins in early work by Jonathan Shopiro
and me at Bell Labs but was revised and extended by several different individuals and groups dur-
ing standardization. The valarray library for numerical computation (§40.5) is primarily the work
of Kent Budge. Jerry Schwarz transformed my streams library (§1.4.2.1) into the iostreams library
(§4.3, Chapter 38) using Andrew Koenig’s manipulator technique (§38.4.5.2) and other ideas. The
iostreams library was further refined during standardization, where the bulk of the work was done
by Jerry Schwarz, Nathan Myers, and Norihiro Kumagai.

By commercial standards the C++98 standard library is tiny. For example, there is no standard
GUI, database access library, or Web application library. Such libraries are widely available but are
not part of the ISO standard. The reasons for that are practical and commercial, rather than techni-
cal. However, the C standard library was (and is) many influential people’s measure of a standard
library, and compared to that, the C++ standard library is huge.

1.4.4 The 2011 Standard

The current C++, C++11, known for years as C++0x, is the work of the members of WG21. The
committee worked under increasingly onerous self-imposed processes and procedures. These pro-
cesses probably led to a better (and more rigorous) specification, but they also limited innovation
[Stroustrup,2007]. An initial draft standard for public review was produced in 2009. The second
ISO C++ standard (ISO/IEC 14882-2011) [C++,2011] was ratified by a 21-0 national vote in
August 2011.

One reason for the long gap between the two standards is that most members of the committee
(including me) were under the mistaken impression that the ISO rules required a *“waiting period”
after a standard was issued before starting work on new features. Consequently, serious work on
new language features did not start until 2002. Other reasons included the increased size of modern
languages and their foundation libraries. In terms of pages of standards text, the language grew by
about 30% and the standard library by about 100%. Much of the increase was due to more detailed
specification, rather than new functionality. Also, the work on a new C++ standard obviously had
to take great care not to compromise older code through incompatible changes. There are billions
of lines of C++ code in use that the committee must not break.

The overall aims for the C++11 effort were:

* Make C++ a better language for systems programming and library building.

* Make C++ easier to teach and learn.

The aims are documented and detailed in [Stroustrup,2007].

A major effort was made to make concurrent systems programming type-safe and portable.
This involved a memory model (§41.2) and a set of facilities for lock-free programming (§41.3),
which is primarily the work of Hans Boehm, Brian McKnight, and others. On top of that, we
added the threads library. Pete Becker, Peter Dimov, Howard Hinnant, William Kempf, Anthony
Williams, and others did massive amounts of work on that. To provide an example of what can be
achieved on top of the basic concurrency facilities, I proposed work on *“a way to exchange
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information between tasks without explicit use of a lock,” which became futures and async()
(§5.3.5); Lawrence Crowl and Detlef Vollmann did most of the work on that. Concurrency is an
area where a complete and detailed listing of who did what and why would require a very long
paper. Here, I can’t even try.

1.4.4.1 Language Features

The list of language features and standard-library facilities added to C++98 to get C++11 is pre-
sented in §44.2. With the exception of concurrency support, every addition to the language could
be deemed ‘“‘minor,” but doing so would miss the point: language features are meant to be used in
combination to write better programs. By “better” I mean easier to read, easier to write, more ele-
gant, less error-prone, more maintainable, faster-running, consuming fewer resources, etc.

Here are what I consider the most widely useful new “building bricks” affecting the style of

C++11 code with references to the text and their primary authors:

¢ Control of defaults: =delete and =default: §3.3.4, §17.6.1, §17.6.4; Lawrence Crowl and
Bjarne Stroustrup.

* Deducing the type of an object from its initializer, auto: §2.2.2, §6.3.6.1; Bjarne Stroustrup.
I first designed and implemented auto in 1983 but had to remove it because of C compatibil-
ity problems.

* Generalized constant expression evaluation (including literal types), constexpr: §2.2.3,
§10.4, §12.1.6; Gabriel Dos Reis and Bjarne Stroustrup [DosReis,2010].

e In-class member initializers: §17.4.4; Michael Spertus and Bill Seymour.

* Inheriting constructors: §20.3.5.1; Bjarne Stroustrup, Michael Wong, and Michel Michaud.

* Lambda expressions, a way of implicitly defining function objects at the point of their use in
an expression: §3.4.3, §11.4; Jaakko Jarvi.

* Move semantics, a way of transmitting information without copying: §3.3.2, §17.5.2;
Howard Hinnant.

* A way of stating that a function may not throw exceptions noexcept: §13.5.1.1; David Abra-
hams, Rani Sharoni, and Doug Gregor.

* A proper name for the null pointer, §7.2.2; Herb Sutter and Bjarne Stroustrup.

* The range-for statement: §2.2.5, §9.5.1; Thorsten Ottosen and Bjarne Stroustrup.

¢ Qverride controls: final and override: §20.3.4. Alisdair Meredith, Chris Uzdavinis, and Ville
Voutilainen.

* Type aliases, a mechanism for providing an alias for a type or a template. In particular, a
way of defining a template by binding some arguments of another template: §3.4.5, §23.6;
Bjarne Stroustrup and Gabriel Dos Reis.

* Typed and scoped enumerations: enum class: §8.4.1; David E. Miller, Herb Sutter, and
Bjarne Stroustrup.

* Universal and uniform initialization (including arbitrary-length initializer lists and protec-
tion against narrowing): §2.2.2, §3.2.1.3, §6.3.5, §17.3.1, §17.3.4; Bjarne Stroustrup and
Gabriel Dos Reis.

* Variadic templates, a mechanism for passing an arbitrary number of arguments of arbitrary
types to a template: §3.4.4, §28.6; Doug Gregor and Jaakko Jarvi.



Section 1.4.4.1 Language Features 29

Many more people than can be listed here deserve to be mentioned. The technical reports to the
committee [WG21] and my C++11 FAQ [Stroustrup,2010a] give many of the names. The minutes
of the committee’s working groups mention more still. The reason my name appears so often is (I
hope) not vanity, but simply that I chose to work on what I consider important. These are features
that will be pervasive in good code. Their major role is to flesh out the C++ feature set to better
support programming styles (§1.2.1). They are the foundation of the synthesis that is C++11.

Much work went into a proposal that did not make it into the standard. “Concepts” was a facil-
ity for specifying and checking requirements for template arguments [Gregor,2006] based on previ-
ous research (e.g., [Stroustrup,1994] [Siek,2000] [DosReis,2006]) and extensive work in the com-
mittee. It was designed, specified, implemented, and tested, but by a large majority the committee
decided that the proposal was not yet ready. Had we been able to refine “concepts,” it would have
been the most important single feature in C++11 (its only competitor for that title is concurrency
support). However, the committee decided against “‘concepts’ on the grounds of complexity, diffi-
culty of use, and compile-time performance [Stroustrup,2010b]. I think we (the committee) did the
right thing with “concepts” for C++11, but this feature really was “‘the one that got away.” This is
currently a field of active research and design [Sutton,2011] [Stroustrup,2012a].

1.4.4.2 Standard Library

The work on what became the C++11 standard library started with a standards committee technical
report (“TR1”). Initially, Matt Austern was the head of the Library Working Group, and later
Howard Hinnant took over until we shipped the final draft standard in 2011.

As for language features, I'll only list a few standard-library components with references to the
text and the names of the individuals most closely associated with them. For a more detailed list,
see §44.2.2. Some components, such as unordered_map (hash tables), were ones we simply didn’t
manage to finish in time for the C++98 standard. Many others, such as unique_ptr and function
were part of a technical report (TR1) based on Boost libraries. Boost is a volunteer organization
created to provide useful library components based on the STL [Boost].

e Hashed containers, such as unordered_map: §31.4.3; Matt Austern.

* The basic concurrency library components, such as thread, mutex, and lock: §5.3, §42.2; Pete

Becker, Peter Dimov, Howard Hinnant, William Kempf, Anthony Williams, and more.
* Launching asynchronous computation and returning results, future, promise, and async():
§5.3.5, §42.4.6; Detlef Vollmann, Lawrence Crowl, Bjarne Stroustrup, and Herb Sutter.

* The garbage collection interface: §34.5; Michael Spertus and Hans Boehm.

* A regular expression library, regexp: §5.5, Chapter 37; John Maddock.

* A random number library: §5.6.3, §40.7; Jens Maurer and Walter Brown. It was about time.

I shipped the first random number library with “C with Classes™ in 1980.
Several utility components were tried out in Boost:
* A pointer for simply and efficiently passing resources, unique_ptr: §5.2.1, §34.3.1; Howard
E. Hinnant. This was originally called move_ptr and is what auto_ptr should have been had
we known how to do so for C++98.

* A pointer for representing shared ownership, shared_ptr: §5.2.1, §34.3.2; Peter Dimov. A

successor to the C+498 counted_ptr proposal from Greg Colvin.
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e The tuple library: §5.4.3, §28.5, §34.2.4.2; Jaakko Jarvi and Gary Powell. They credit a
long list of contributors, including Doug Gregor, David Abrahams, and Jeremy Siek.

* The general bind(): §33.5.1; Peter Dimov. His acknowledgments list a veritable who’s who
of Boost (including Doug Gregor, John Maddock, Dave Abrahams, and Jaakko Jarvi).

* The function type for holding callable objects: §33.5.3; Doug Gregor. He credits William
Kempf and others with contributions.

1.4.5 What is C++ used for?

By now (2013), C++ is used just about everywhere: it is in your computer, your phone, your car,
probably even in your camera. You don’t usually see it. C++ is a systems programming language,
and its most pervasive uses are deep in the infrastructure where we, as users, never look.

C++ is used by millions of programmers in essentially every application domain. Billions
(thousands of millions) of lines of C++ are currently deployed. This massive use is supported by
half a dozen independent implementations, many thousands of libraries, hundreds of textbooks, and
dozens of websites. Training and education at a variety of levels are widely available.

Early applications tended to have a strong systems programming flavor. For example, several
early operating systems have been written in C++: [Campbell,1987] (academic), [Rozier,1988]
(real time), [Berg,1995] (high-throughput I/0). Many current ones (e.g., Windows, Apple’s OS,
Linux, and most portable-device OSs) have key parts done in C++. Your cellphone and Internet
routers are most likely written in C++. I consider uncompromising low-level efficiency essential
for C++. This allows us to use C++ to write device drivers and other software that rely on direct
manipulation of hardware under real-time constraints. In such code, predictability of performance
is at least as important as raw speed. Often, so is the compactness of the resulting system. C++
was designed so that every language feature is usable in code under severe time and space con-
straints (§1.2.4) [Stroustrup,1994,§4.5].

Some of today’s most visible and widely used systems have their critical parts written in C++.
Examples are Amadeus (airline ticketing), Amazon (Web commerce), Bloomberg (financial infor-
mation), Google (Web search), and Facebook (social media). Many other programming languages
and technologies depend critically on C++’s performance and reliability in their implementation.
Examples include the most widely used Java Virtual Machines (e.g., Oracle’s HotSpot), JavaScript
interpreters (e.g., Google’s V8), browsers (e.g., Microsoft’s Internet Explorer, Mozilla’s Firefox,
Apple’s Safari, and Google’s Chrome), and application frameworks (e.g., Microsoft’s NET Web
services framework). I consider C++ to have unique strengths in the area of infrastructure software
[Stroustrup,2012a].

Most applications have sections of code that are critical for acceptable performance. However,
the largest amount of code is not in such sections. For most code, maintainability, ease of exten-
sion, and ease of testing are key. C++’s support for these concerns has led to its widespread use in
areas where reliability is a must and where requirements change significantly over time. Examples
are financial systems, telecommunications, device control, and military applications. For decades,
the central control of the U.S. long-distance telephone system has relied on C++, and every 800 call
(i.e., a call paid for by the called party) has been routed by a C++ program [Kamath,1993]. Many
such applications are large and long-lived. As a result, stability, compatibility, and scalability have
been constant concerns in the development of C++. Multimillion-line C++ programs are common.
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Games is another area where a multiplicity of languages and tools need to coexist with a lan-
guage providing uncompromising efficiency (often on “unusual” hardware). Thus, games has been
another major applications area for C++.

What used to be called systems programming is widely found in embedded systems, so it is not
surprising to find massive use of C++ in demanding embedded systems projects, including com-
puter tomography (CAT scanners), flight control software (e.g., Lockheed-Martin), rocket control,
ship’s engines (e.g., the control of the world’s largest marine diesel engines from MAN), automo-
bile software (e.g., BMW), and wind turbine control (e.g., Vesta).

C++ wasn’t specifically designed with numerical computation in mind. However, much numer-
ical, scientific, and engineering computation is done in C++. A major reason for this is that tradi-
tional numerical work must often be combined with graphics and with computations relying on
data structures that don’t fit into the traditional Fortran mold (e.g., [Root,1995]). I am particularly
pleased to see C++ used in major scientific endeavors, such as the Human Genome Project,
NASA’s Mars Rovers, CERN’s search for the fundamentals of the universe, and many others.

C++’s ability to be used effectively for applications that require work in a variety of application
areas is an important strength. Applications that involve local- and wide-area networking, numer-
ics, graphics, user interaction, and database access are common. Traditionally, such application
areas were considered distinct and were served by distinct technical communities using a variety of
programming languages. However, C++ is widely used in all of those areas, and more. It is
designed so that C++ code can coexist with code written in other languages. Here, again, C++’s
stability over decades is important. Furthermore, no really major system is written 100% in a sin-
gle language. Thus, C++’s original design aim of interoperability becomes significant.

Major applications are not written in just the raw language. C++ is supported by a variety of
libraries (beyond the ISO C++ standard library) and tool sets, such as Boost [Boost] (portable foun-
dation libraries), POCO (Web development), QT (cross-platform application development),
wxWidgets (a cross-platform GUI library), WebKit (a layout engine library for Web browsers),
CGAL (computational geometry), QuickFix (Financial Information eXchange), OpenCV (real-time
image processing), and Root [Root,1995] (High-Energy Physics). There are many thousands of
C++ libraries, so keeping up with them all is impossible.

1.5 Adyvice

Each chapter contains an “Advice” section with a set of concrete recommendations related to its
contents. Such advice consists of rough rules of thumb, not immutable laws. A piece of advice
should be applied only where reasonable. There is no substitute for intelligence, experience, com-
mon sense, and good taste.

I find rules of the form “never do this” unhelpful. Consequently, most advice is phrased as
suggestions for what to do. Negative suggestions tend not to be phrased as absolute prohibitions
and I try to suggest alternatives. I know of no major feature of C++ that I have not seen put to good
use. The “Advice” sections do not contain explanations. Instead, each piece of advice is accompa-
nied by a reference to an appropriate section of the book.

For starters, here are a few high-level recommendations derived from the sections on design,
learning, and history of C++:
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(1]

(2]
(3]
(4]

(5]
(6]

(7]
(8]
(9]
[10]
(1]
[12]

[13]
[14]

[15]
[16]

Represent ideas (concepts) directly in code, for example, as a function, a class, or an enu-
meration; §1.2.

Aim for your code to be both elegant and efficient; §1.2.

Don’t overabstract; §1.2.

Focus design on the provision of elegant and efficient abstractions, possibly presented as
libraries; §1.2.

Represent relationships among ideas directly in code, for example, through parameteriza-
tion or a class hierarchy; §1.2.1.

Represent independent ideas separately in code, for example, avoid mutual dependencies
among classes; §1.2.1.

C++ is not just object-oriented; §1.2.1.

C++ is not just for generic programming; §1.2.1.

Prefer solutions that can be statically checked; §1.2.1.

Make resources explicit (represent them as class objects); §1.2.1, §1.4.2.1.

Express simple ideas simply; §1.2.1.

Use libraries, especially the standard library, rather than trying to build everything from
scratch; §1.2.1.

Use a type-rich style of programming; §1.2.2.

Low-level code is not necessarily efficient; don’t avoid classes, templates, and standard-
library components out of fear of performance problems; §1.2.4, §1.3.3.

If data has an invariant, encapsulate it; §1.3.2.

C++ is not just C with a few extensions; §1.3.3.

In general: To write a good program takes intelligence, taste, and patience. You are not going to get
it right the first time. Experiment!
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A Tour of C++: The Basics

The first thing we do, let’s
kill all the language lawyers.
— Henry VI, Part I1

¢ Introduction
¢ The Basics
Hello, World!; Types, Variables, and Arithmetic; Constants; Tests and Loops; Pointers,
Arrays, and Loops
e User-Defined Types
Structures; Classes; Enumerations
¢ Modularity
Separate Compilation; Namespaces; Error Handling
* Postscript
e Advice

2.1 Introduction

The aim of this chapter and the next three is to give you an idea of what C++ is, without going into
a lot of details. This chapter informally presents the notation of C++, C++’s model of memory and
computation, and the basic mechanisms for organizing code into a program. These are the lan-
guage facilities supporting the styles most often seen in C and sometimes called procedural pro-
gramming. Chapter 3 follows up by presenting C++’s abstraction mechanisms. Chapter 4 and
Chapter 5 give examples of standard-library facilities.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this “lightning tour”
confusing, skip to the more systematic presentation starting in Chapter 6.
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This tour of C++ saves us from a strictly bottom-up presentation of language and library facili-
ties by enabling the use of a rich set of facilities even in early chapters. For example, loops are not
discussed in detail until Chapter 10, but they will be used in obvious ways long before that. Simi-
larly, the detailed description of classes, templates, free-store use, and the standard library are
spread over many chapters, but standard-library types, such as vector, string, complex, map,
unique_ptr, and ostream, are used freely where needed to improve code examples.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New York. In
just a few hours, you are given a quick peek at the major attractions, told a few background stories,
and usually given some suggestions about what to see next. You do not know the city after such a
tour. You do not understand all you have seen and heard. To really know a city, you have to live in
it, often for years. However, with a bit of luck, you will have gained a bit of an overview, a notion
of what is special about the city, and ideas of what might be of interest to you. After the tour, the
real exploration can begin.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11. Such histori-
cal information can be found in §1.4 and Chapter 44.

2.2 The Basics

C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).

object file 1
object file 2

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.
The ISO C++ standard defines two kinds of entities:
* Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-
ments and while-statements)
* Standard-library components, such as containers (e.g., vector and map) and I/O operations
(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself (and is with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.
C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.

executable file
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2.2.1 Hello, World!

The minimal C++ program is
int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing (§15.4).

Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function
body. The double slash, /#, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int value returned by main(), if any, is the program’s return value to
“the system.” If no value is returned, the system will receive a value indicating successful comple-
tion. A nonzero value from main() indicates failure. Not every operating system and execution
environment make use of that return value: Linux/Unix-based environments often do, but Win-
dows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()

{
}

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World\n";

std::cout << "Hello, World'\n"

would make no sense. The operator << (‘‘put to’”) writes its second argument onto its first. In this
case, the string literal "Hello, World"\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single ““special character.” In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§2.4.2,
Chapter 14). I usually leave out the std:: when discussing standard features; §2.4.2 shows how to
make names from a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream>

using namespace std; /I make names from std visible without std:: (§2.4.2)
double square(double x) /l square a double precision floating-point number
{

return xxx;

}



40 A Tour of C++: The Basics Chapter 2

void print_square(double x)

{
cout << "the square of " << x << " is " << square(x) << "\n";
}
int main()
{

print_square(1.234); // print: the square of 1.234 is 1.52276
}

A “return type” void indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.

A declaration is a statement that introduces a name into the program. It specifies a type for the
named entity:

* A type defines a set of possible values and a set of operations (for an object).

* An object is some memory that holds a value of some type.

e Avalue is a set of bits interpreted according to a type.

e A variable is a named object.

C++ offers a variety of fundamental types. For example:

bool // Boolean, possible values are true and false
char /l character, for example, ‘a', ' z', and '9'
int 1/ integer, for example, 1, 42, and 1066

double // double-precision floating-point number, for example, 3.14 and 299793.0

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool:

|
|

double:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are quoted in multiples of the size of a char. The size of a type is
implementation-defined (i.e., it can vary among different machines) and can be obtained by the
sizeof operator; for example, sizeof(char) equals 1 and sizeof(int) is often 4.

The arithmetic operators can be used for appropriate combinations of these types:
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X+y /l plus

+X /l unary plus

X=y /l minus

-X // unary minus

Xy /Il multiply

xly / divide

X%y /I remainder (modulus) for integers

So can the comparison operators:

X== /l equal

x!=y /l not equal

X<y // less than

x>y // greater than

x<=y // less than or equal
x>=y /l greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions (§10.5.3)
between the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value

{

double d = 2.2; // initialize floating-point number

inti=7; / initialize integer

d = d+i; /l assign sum to d

i = dxi; 1/l assign product to i (truncating the double d*i to an int)
}

Note that = is the assignment operator and == tests equality.
C++ offers a variety of notations for expressing initialization, such as the = used above, and a
universal form based on curly-brace-delimited initializer lists:

double d1 = 2.3;
double d2 {2.3};

complex<double>z = 1; /I a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};

complex<double> z3 = {1,2}; / the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form (§6.3.5.2).
If nothing else, it saves you from conversions that lose information (narrowing conversions; §10.5):

intil1 =7.2; /l i1 becomes 7
inti2 {7.2}; // error: floating-point to integer conversion
int i3 = {7.2}; /! error: floating-point to integer conversion (the = is redundant)

A constant (§2.2.3) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§3.2.1.1).
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When defining a variable, you don’t actually need to state its type explicitly when it can be
deduced from the initializer:

auto b = true; // a bool
auto ch = 'x'; /l a char
auto i = 123; / an int
auto d =1.2; // a double

auto z = sqri(y); /] z has the type of whatever sqrt(y) returns

With auto, we use the = syntax because there is no type conversion involved that might cause prob-
lems (§6.3.6.2).

We use auto where we don’t have a specific reason to mention the type explicitly. ‘Specific
reasons”” include:

¢ The definition is in a large scope where we want to make the type clearly visible to readers

of our code.

e We want to be explicit about a variable’s range or precision (e.g., double rather than float).
Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§4.5.1).

In addition to the conventional arithmetic and logical operators (§10.3), C++ offers more spe-
cific operations for modifying a variable:

x+=y Il x = x+y

++X /l increment: x = x+1
X—-=y I x =x-y

—-—X /I decrement: x = x-1
Xk=y /] scaling: x = x*y

x/=y // scaling: x = x/y
X%=y Il x = x%y

These operators are concise, convenient, and very frequently used.

2.2.3 Constants

C++ supports two notions of immutability (§7.5):

* const: meaning roughly *“I promise not to change this value” (§7.5). This is used primarily
to specify interfaces, so that data can be passed to functions without fear of it being modi-
fied. The compiler enforces the promise made by const.

* constexpr: meaning roughly “to be evaluated at compile time” (§10.4). This is used primar-
ily to specify constants, to allow placement of data in memory where it is unlikely to be cor-
rupted, and for performance.

For example:

const intdmv =17; // dmv is a named constant

int var = 17; // var is not a constant

constexpr double max1 = 1.4xsquare(dmv); /I OK if square(17) is a constant expression
constexpr double max2 = 1.4:xsquare(var); / error: var is not a constant expression

const double max3 = 1.4+square(var); /I OK, may be evaluated at run time
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double sum(const vector<double>&); /I sum will not modify its argument (§2.2.5)
vector<double> v {1.2, 3.4, 4.5}; // v is not a constant

const double s1 = sum(v); /Il OK: evaluated at run time

constexpr double s2 = sum(v); / error: sum(v) not constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated
by the compiler, it must be defined constexpr. For example:

constexpr double square(double x) { return x:x; }

To be constexpr, a function must be rather simple: just a return-statement computing a value. A
constexpr function can be used for non-constant arguments, but when that is done the result is not a
constant expression. We allow a constexpr function to be called with non-constant-expression argu-
ments in contexts that do not require constant expressions, so that we don’t have to define essen-
tially the same function twice: once for constant expressions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds (§2.2.5,
§7.3), case labels (§2.2.4, §9.4.2), some template arguments (§25.2), and constants declared using
constexpr). In other cases, compile-time evaluation is important for performance. Independently of
performance issues, the notion of immutability (of an object with an unchangeable state) is an
important design concern (§10.4).

2.2.4 Tests and Loops

C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept()

{
cout << "Do you want to proceed (y or n)?\n"; 1/ write question
char answer = 0;
cin >> answer; // read answer
if (answer =="'y') return true;
return false;

}

To match the << output operator (“‘put to’’), the >> operator (“‘get from”) is used for input; cin is
the standard input stream. The type of the right-hand operand of >> determines what input is
accepted, and its right-hand operand is the target of the input operation. The \n character at the end
of the output string represents a newline (§2.2.1).

The example could be improved by taking an n (for ‘‘no’’) answer into account:

bool accept2()
{

cout << "Do you want to proceed (y or n)?\n"; /] write question

char answer = 0;
cin >> answer; /I read answer
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switch (answer) {
case'y":
return true;
case 'n':
return false;
default:
cout << "I'll take that for a no.\n";
return false;

}

Chapter 2

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the default is chosen. If no default is provided, no

action is taken if the value doesn’t match any case constant.

Few programs are written without loops. For example, we might like to give the user a few tries

to produce acceptable input:

bool accept3()
{

int tries =1;
while (tries<4) {

cout << "Do you want to proceed (y or n)?\n"; 1/l write question

char answer = 0;

cin >> answer; // read answer

switch (answer) {

case'y":
return true;

case 'n':
return false;

default:
cout << "Sorry, | don't understand that.\n";
++tries; // increment

}

}

cout << "I'll take that for a no.\n";
return false;

}

The while-statement executes until its condition becomes false.

2.2.5 Pointers, Arrays, and Loops

An array of elements of type char can be declared like this:
char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

char: p; // pointer to character

In declarations, [] means ‘“array of” and * means “‘pointer to.’

>

All arrays have 0 as their lower
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bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression
(§2.2.3). A pointer variable can hold the address of an object of the appropriate type:

char: p = &v[3]; /l p points to v’s fourth element
char x = =p; /l *p is the object that p points to

In an expression, prefix unary * means ‘“‘contents of”’ and prefix unary & means “address of.” We
can represent the result of that initialized definition graphically:

Consider copying ten elements from one array to another:

void copy_fct()

{
int vi[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1
for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];
/...
}

This for-statement can be read as “‘set i to zero; while i is not 10, copy the ith element and increment
i.” When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers
a simpler for-statement, called a range-for-statement, for loops that traverse a sequence in the sim-
plest way:

void print()

{
int v[] ={0,1,2,3,4,5,6,7,8,9};

for (auto x : v) /l for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';
/...

}

The first range-for-statement can be read as “‘for every element of v, from the first to the last, place
a copy in x and print it.”” Note that we don’t have to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§3.4.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:
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void increment()

{
Int v[] = {0’1 !2’3!4!5’6!758!9};
for (auto& x : v)
++X;
/...
}

In a declaration, the unary suffix & means ‘“‘reference to.” A reference is similar to a pointer,
except that you don’t need to use a prefix = to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization. When used in declara-
tions, operators (such as &, *, and []) are called declarator operators:

Ta[n]l; // T[n]: array of n Ts (§7.3)

T p; /I T*: pointer to T (§7.2)

T&r; /I T&: reference to T (§7.7)

Tf(A);  // T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When
we don’t have an object to point to or if we need to represent the notion of “no object available”
(e.g., for an end of a list), we give the pointer the value nullptr (“the null pointer’’). There is only
one nullptr shared by all pointer types:

double: pd = nullptr;
Link<Record>+ Ist = nullptr; // pointer to a Link to a Record
int x = nullptr; / error: nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually
points to something:

int count_x(char p, char x)
/l count the number of occurrences of x in p[]
/l p is assumed to point to a zero-terminated array of char (or to nothing)

{
if (p==nullptr) return 0;
int count = 0;
for (; #p!=0; ++p)
if (+p==x)
++count;
return count;
}

Note how we can move a pointer to point to the next element of an array using ++ and that we can
leave out the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char: is a C-style string, that is, that the pointer
points to a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr (§7.2.2). However, using nullptr
eliminates potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).
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2.3 User-Defined Types

We call the types that can be built from the fundamental types (§2.2.2), the const modifier (§2.2.3),
and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types and operations is
rich, but deliberately low-level. They directly and efficiently reflect the capabilities of conventional
computer hardware. However, they don’t provide the programmer with high-level facilities to con-
veniently write advanced applications. Instead, C++ augments the built-in types and operations
with a sophisticated set of abstraction mechanisms out of which programmers can build such high-
level facilities. The C++ abstraction mechanisms are primarily designed to let programmers design
and implement their own types, with suitable representations and operations, and for programmers
to simply and elegantly use such types. Types built out of the built-in types using C++’s abstraction
mechanisms are called user-defined types. They are referred to as classes and enumerations. Most
of this book is devoted to the design, implementation, and use of user-defined types. The rest of
this chapter presents the simplest and most fundamental facilities for that. Chapter 3 is a more
complete description of the abstraction mechanisms and the programming styles they support.
Chapter 4 and Chapter 5 present an overview of the standard library, and since the standard library
mainly consists of user-defined types, they provide examples of what can be built using the lan-
guage facilities and programming techniques presented in Chapter 2 and Chapter 3.

2.3.1 Structures

The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
doublex elem; // pointer to elements
5
This first version of Vector consists of an int and a double:.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be
useful, we must give v some elements to point to. For example, we can construct a Vector like this:

void vector_init(Vector& v, int s)

{
v.elem = new double[s]; // allocate an array of s doubles
V.sZ=Ss;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s size member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§2.2.5,
§7.7); that way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap; §11.2).
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A simple use of Vector looks like this:

double read_and_sum(int s)
/] read s integers from cin and return their sum; s is assumed to be positive

{
Vector v;
vector_init(v,s); // allocate s elements for v
for (int i=0; il=s; ++i)
cin>>v.elem[i]; // read into elements
double sum = 0;
for (int i=0; i!=s; ++i)
sum+=v.elem([i]; 1/ take the sum of the elements
return sum;
}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector.
In particular, a user of Vector has to know every detail of Vector’s representation. The rest of this
chapter and the next gradually improve Vector as an example of language features and techniques.
Chapter 4 presents the standard-library vector, which contains many nice improvements, and Chap-
ter 31 presents the complete vector in the context of other standard-library facilities.

I use vector and other standard-library components as examples

* to illustrate language features and design techniques, and

* to help you learn and use the standard-library components.
Don’t reinvent standard-library components, such as vector and string; use them.

We use . (dot) to access struct members through a name (and through a reference) and -> to
access struct members through a pointer. For example:

void f(Vector v, Vector& rv, Vector: pv)

{
inti1 = v.sz; // access through name
inti2 =rv.sz; /l access through reference
int i4 = pv—>sz; /I access through pointer

}

2.3.2 Classes

Having the data specified separately from the operations on it has advantages, such as the ability to
use the data in arbitrary ways. However, a tighter connection between the representation and the
operations is needed for a user-defined type to have all the properties expected of a “real type.” In
particular, we often want to keep the representation inaccessible to users, so as to ease use, guaran-
tee consistent use of the data, and allow us to later improve the representation. To do that we have
to distinguish between the interface to a type (to be used by all) and its implementation (which has
access to the otherwise inaccessible data). The language mechanism for that is called a class. A
class is defined to have a set of members, which can be data, function, or type members. The inter-
face is defined by the public members of a class, and private members are accessible only through
that interface. For example:
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class Vector {

public:
Vector(int s) :elem{new double[s]}, sz{s} {} // construct a Vector
double& operator[](int i) { return elem[i]; } /I element access: subscripting
int size() { return sz; }

private:
doublex elem; // pointer to the elements
int sz; // the number of elements
b

Given that, we can define a variable of our new type Vector:
Vector v(6);  // a Vector with 6 elements

We can illustrate a Vector object graphically:

Vector:
elem: ~ 0: 1: 2: 3: 4: 5:

s [6 ]~ T [ T T T ]

Basically, the Vector object is a “handle” containing a pointer to the elements (elem) plus the num-
ber of elements (sz). The number of elements (6 in the example) can vary from Vector object to
Vector object, and a Vector object can have a different number of elements at different times
(§3.2.1.3). However, the Vector object itself is always the same size. This is the basic technique for
handling varying amounts of information in C++: a fixed-size handle referring to a variable amount
of data “elsewhere” (e.g., on the free store allocated by new; §11.2). How to design and use such
objects is the main topic of Chapter 3.

Here, the representation of a Vector (the members elem and sz) is accessible only through the
interface provided by the public members: Vector(), operator[](), and size(). The read_and_sum()
example from §2.3.1 simplifies to:

double read_and_sum(int s)

{
Vector v(s); /I make a vector of s elements
for (int i=0; i!=v.size(); ++i)
cin>>Vl[il; // read into elements
double sum = 0;
for (int i=0; i!=v.size(); ++i)
sum+=Vl[il; // take the sum of the elements
return sum;
}

A “function” with the same name as its class is called a constructor, that is, a function used to con-
struct objects of a class. So, the constructor, Vector(), replaces vector_init() from §2.3.1. Unlike an
ordinary function, a constructor is guaranteed to be used to initialize objects of its class. Thus,
defining a constructor eliminates the problem of uninitialized variables for a class.
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Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs
an integer to do that. That integer is used as the number of elements. The constructor initializes
the Vector members using a member initializer list:

:elem{new double[s]}, sz{s}

That is, we first initialize elem with a pointer to s elements of type double obtained from the free
store. Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference
to the appropriate element (a double&).

The size() function is supplied to give users the number of elements.

Obviously, error handling is completely missing, but we’ll return to that in §2.4.3. Similarly,
we did not provide a mechanism to “give back” the array of doubles acquired by new; §3.2.1.2
shows how to use a destructor to elegantly do that.

2.3.3 Enumerations

In addition to classes, C++ supports a simple form of user-defined type for which we can enumer-
ate the values:

enum class Color { red, blue, green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used
repeatedly in different enum classes without confusion. For example, Color::red is Color’s red
which is different from Traffic_light::red.

Enumerations are used to represent small sets of integer values. They are used to make code
more readable and less error-prone than it would have been had the symbolic (and mnemonic) enu-
merator names not been used.

The class after the enum specifies that an enumeration is strongly typed and that its enumerators
are scoped. Being separate types, enum classes help prevent accidental misuses of constants. In
particular, we cannot mix Traffic_light and Color values:

Color x =red; // error: which red?
Color y = Traffic_light::red;  // error: that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

int i = Color::red; // error: Color::red is not an int
Color ¢ = 2; // error: 2 is not a Color

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints
(without the need for an explicit conversion), you can remove the class from enum class to get a
“plain enum” (§8.4.2).

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <;
§2.2.2) defined. However, an enumeration is a user-defined type so we can define operators for it:
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Traffic_light& operator++(Traffic_light& t)
1/ prefix increment: ++

{
switch (t) {
case Traffic_light::green: return t=Traffic_light::yellow;
case Traffic_light::yellow: return t=Traffic_light::red;
case Traffic_light::red: return t=Traffic_light::green;
}
}
Traffic_light next = ++light; /I next becomes Traffic_light::green

C++ also offers a less strongly typed “plain” enum (§8.4.2).

2.4 Modularity

A C++ program consists of many separately developed parts, such as functions (§2.2.1, Chapter
12), user-defined types (§2.3, §3.2, Chapter 16), class hierarchies (§3.2.4, Chapter 20), and tem-
plates (§3.4, Chapter 23). The key to managing this is to clearly define the interactions among
those parts. The first and most important step is to distinguish between the interface to a part and
its implementation. At the language level, C++ represents interfaces by declarations. A declara-
tion specifies all that’s needed to use a function or a type. For example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:
Vector(int s);
double& operator[](int i);
int size();
private:
doublex elem; // elem points to an array of sz doubles
int sz;
b
The key point here is that the function bodies, the function definitions, are “‘elsewhere.” For this

example, we might like for the representation of Vector to be “‘elsewhere” also, but we will deal
with that later (abstract types; §3.2.2). The definition of sqrt() will look like this:

double sqrt(double d) 1/l definition of sqrt()
{

// ... algorithm as found in math textbook ...

}
For Vector, we need to define all three member functions:

Vector::Vector(int s) 1/ definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{

}
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double& Vector::operator[](int i) /I definition of subscripting
{
return elem(i];
}
int Vector::size() 1/l definition of size()
{
return sz;
}

We must define Vector’s functions, but not sqrt() because it is part of the standard library. However,
that makes no real difference: a library is simply some ‘“‘other code we happen to use” written with
the same language facilities as we use.

2.4.1 Separate Compilation

C++ supports a notion of separate compilation where user code sees only declarations of types and
functions used. The definitions of those types and functions are in separate source files and com-
piled separately. This can be used to organize a program into a set of semi-independent code frag-
ments. Such separation can be used to minimize compilation times and to strictly enforce separa-
tion of logically distinct parts of a program (thus minimizing the chance of errors). A library is
often a separately compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. For example:

I/ Vector.h:

class Vector {
public:
Vector(int s);
double& operator[](int i);
int size();
private:
double: elem; /l elem points to an array of sz doubles
int sz;

5

This declaration would be placed in a file Vector.h, and users will include that file, called a header
file, to access that interface. For example:

/l user.cpp:
#include "Vector.h" // get Vector’s interface
#include <cmath> // get the the standard-library math function interface including sqrt()

using namespace std; // make std members visible (§2.4.2)
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double sqrt_sum(Vector& v)

{
double sum = 0;
for (int i=0; i!'=v.size(); ++i)
sum+=sqrt(v[i]); /l sum of square roots
return sum;
}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will
also include the .h file providing its interface:

1/l Vector.cpp:
#include "Vector.h" // get the interface

Vector::Vector(int s)
:elem{new double[s]}, sz{s}

{
}
double& Vector::operator[](int i)
{
return elem[i];
}
int Vector::size()
{
return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,
but the two files are otherwise independent and can be separately compiled. Graphically, the pro-
gram fragments can be represented like this:

Vector.h:

Vector interface

user.cpp: Vector.cpp:

#include "Vector.h" #include "Vector.h"
use Vector define Vector

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to
take advantage of a particular language implementation. However, it is of great practical impor-
tance. The best approach is to maximize modularity, represent that modularity logically through
language features, and then exploit the modularity physically through files for effective separate
compilation (Chapter 14, Chapter 15).
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2.4.2 Namespaces

In addition to functions (§2.2.1, Chapter 12), classes (Chapter 16), and enumerations (§2.3.3, §8.4),
C++ offers namespaces (Chapter 14) as a mechanism for expressing that some declarations belong
together and that their names shouldn’t clash with other names. For example, I might want to
experiment with my own complex number type (§3.2.1.1, §18.3, §40.4):

namespace My_code {
class complex {/* ... */ };
complex sqrt(complex);

/...
int main();
}
int My_code::main()
{
complex z {1,2};
auto z2 = sqri(z);
std::cout << '{' << z2.real() << ',' << z2.imag() << "}\\n";
/...
h
int main()
{
return My_code::main();
}

By putting my code into the namespace My_code, I make sure that my names do not conflict with
the standard-library names in namespace std (§4.1.2). The precaution is wise, because the standard
library does provide support for complex arithmetic (§3.2.1.1, §40.4).

The simplest way to access a name in another namespace is to qualify it with the namespace
name (e.g., std::cout and My_code::main). The ‘“‘real main()”” is defined in the global namespace,
that is, not local to a defined namespace, class, or function. To gain access to names in the stan-
dard-library namespace, we can use a using-directive (§14.2.3):

using namespace std;

Namespaces are primarily used to organize larger program components, such as libraries. They
simplify the composition of a program out of separately developed parts.

2.4.3 Error Handling

Error handling is a large and complex topic with concerns and ramifications that go far beyond lan-
guage facilities into programming techniques and tools. However, C++ provides a few features to
help. The major tool is the type system itself. Instead of painstakingly building up our applications
from the built-in types (e.g., char, int, and double) and statements (e.g., if, while, and for), we build
more types that are appropriate for our applications (e.g., string, map, and regex) and algorithms
(e.g., sort(), find_if(), and draw_all()). Such higher level constructs simplify our programming, limit
our opportunities for mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box),
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and increase the compiler’s chances of catching such errors. The majority of C++ constructs are
dedicated to the design and implementation of elegant and efficient abstractions (e.g., user-defined
types and algorithms using them). One effect of this modularity and abstraction (in particular, the
use of libraries) is that the point where a run-time error can be detected is separated from the point
where it can be handled. As programs grow, and especially when libraries are used extensively,
standards for handling errors become important.

2.4.3.1 Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that
is out of range for the vector from §2.3.2?
e The writer of Vector doesn’t know what the user would like to have done in this case (the
writer of Vector typically doesn’t even know in which program the vector will be running).
* The user of Vector cannot consistently detect the problem (if the user could, the out-of-range
access wouldn’t happen in the first place).
The solution is for the Vector implementer to detect the attempted out-of-range access and then tell
the user about it. The user can then take appropriate action. For example, Vector::operator[]() can
detect an attempted out-of-range access and throw an out_of_range exception:

double& Vector::operator[](int i)

{
if (i<0 1l size()<=i) throw out_of range{"Vector::operator[]"};
return elem[i];

}

The throw transfers control to a handler for exceptions of type out_of range in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller (§13.5.1). For example:

void f(Vector& v)

{
/...
try { // exceptions here are handled by the handler defined below
v[v.size()] = 7; // try to access beyond the end of v
}
catch (out_of _range){ // oops: out_of _range error
/... handle range error ...
}
/...
}

We put code for which we are interested in handling exceptions into a try-block. That attempted
assignment to v[v.size()] will fail. Therefore, the catch-clause providing a handler for out_of range
will be entered. The out_of_range type is defined in the standard library and is in fact used by some
standard-library container access functions.

Use of the exception-handling mechanisms can make error handling simpler, more systematic,
and more readable. See Chapter 13 for further discussion, details, and examples.
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2.4.3.2 Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argu-
ment and refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally
specified Vector’s subscript operator, we would have said something like “‘the index must be in the
[0:size()) range,” and that was in fact what we tested in our operator[](). Whenever we define a
function, we should consider what its preconditions are and if feasible test them (see §12.4, §13.4).

However, operator[]() operates on objects of type Vector and nothing it does makes any sense
unless the members of Vector have “‘reasonable” values. In particular, we did say ‘“‘elem points to
an array of sz doubles” but we only said that in a comment. Such a statement of what is assumed
to be true for a class is called a class invariant, or simply an invariant. It is the job of a constructor
to establish the invariant for its class (so that the member functions can rely on it) and for the mem-
ber functions to make sure that the invariant holds when they exit. Unfortunately, our Vector con-
structor only partially did its job. It properly initialized the Vector members, but it failed to check
that the arguments passed to it made sense. Consider:

Vector v(-27);

This is likely to cause chaos.
Here is a more appropriate definition:

Vector::Vector(int s)

{
if (s<0) throw length_error{};
elem = new double[s];
SZ=S;

}

I use the standard-library exception length_error to report a non-positive number of elements
because some standard-library operations use that exception to report problems of this kind. If
operator new can’t find memory to allocate, it throws a std::bad_alloc. We can now write:

void test()
{

try {
Vector v(-27);

}
catch (std::length_error) {
/I handle negative size

}
catch (std::bad_alloc) {
/I handle memory exhaustion
}
}

You can define your own classes to be used as exceptions and have them carry arbitrary information
from a point where an error is detected to a point where it can be handled (§13.5).

Often, a function has no way of completing its assigned task after an exception is thrown.
Then, “handling” an exception simply means doing some minimal local cleanup and rethrowing
the exception (§13.5.2.1).
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The notion of invariants is central to the design of classes, and preconditions serve a similar role
in the design of functions. Invariants
* helps us to understand precisely what we want
» forces us to be specific; that gives us a better chance of getting our code correct (after
debugging and testing).
The notion of invariants underlies C++’s notions of resource management supported by construc-
tors (§2.3.2) and destructors (§3.2.1.2, §5.2). See also §13.4, §16.3.1, and §17.2.

2.4.3.3 Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually
preferable to do so. That’s what much of the type system and the facilities for specifying the inter-
faces to user-defined types are for. However, we can also perform simple checks on other proper-
ties that are known at compile time and report failures as compiler error messages. For example:

static_assert(4<=sizeof(int), "integers are too small"); // check integer size

This will write integers are too small if 4<=sizeof(int) does not hold, that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_assert mechanism can be used for anything that can be expressed in terms of constant
expressions (§2.2.3, §10.4). For example:

constexpr double C = 299792.458; Il km/s

void f(double speed)

{ const double local_max = 160.0/(60+:60); /l 160 km/h == 160.0/(60*60) km/s
static_assert(speed<C,"can't go that fast"); /l error: speed must be a constant

static_assert(local_max<C,"can't go that fast"); / OK

/...
}

In general, static_assert(A,S) prints S as a compiler error message if A is not true.

The most important uses of static_assert come when we make assertions about types used as
parameters in generic programming (§5.4.2, §24.3).

For runtime-checked assertions, see §13.4.

2.5 Postscript

The topics covered in this chapter roughly correspond to the contents of Part II (Chapters 6—15).
Those are the parts of C++ that underlie all programming techniques and styles supported by C++.
Experienced C and C++ programmers, please note that this foundation does not closely correspond
to the C or C++98 subsets of C++ (that is, C++11).
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2.6 Advice

[1] Don’t panic! All will become clear in time; §2.1.
[2]  You don’t have to know every detail of C++ to write good programs; §1.3.1.
[3] Focus on programming techniques, not on language features; §2.1.
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A Tour of C++: Abstraction Mechanisms

Don’t Panic!
— Douglas Adams

* Introduction
e Classes

Concrete Types; Abstract Types; Virtual Functions; Class Hierarchies
e Copy and Move

Copying Containers; Moving Containers; Resource Management; Suppressing Operations
e Templates

Parameterized Types; Function Templates; Function Objects; Variadic Templates; Aliases
* Advice

3.1 Introduction

This chapter aims to give you an idea of C++’s support for abstraction and resource management
without going into a lot of detail. It informally presents ways of defining and using new types
(user-defined types). In particular, it presents the basic properties, implementation techniques, and
language facilities used for concrete classes, abstract classes, and class hierarchies. Templates are
introduced as a mechanism for parameterizing types and algorithms with (other) types and algo-
rithms. Computations on user-defined and built-in types are represented as functions, sometimes
generalized to femplate functions and function objects. These are the language facilities supporting
the programming styles known as object-oriented programming and generic programming. The
next two chapters follow up by presenting examples of standard-library facilities and their use.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this “lightning tour”
confusing, skip to the more systematic presentation starting in Chapter 6.
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As in Chapter 2, this tour presents C++ as an integrated whole, rather than as a layer cake.
Consequently, it does not identify language features as present in C, part of C++98, or new in
C++11. Such historical information can be found in §1.4 and Chapter 44.

3.2 Classes

The central language feature of C++ is the class. A class is a user-defined type provided to repre-
sent a concept in the code of a program. Whenever our design for a program has a useful concept,
idea, entity, etc., we try to represent it as a class in the program so that the idea is there in the code,
rather than just in our head, in a design document, or in some comments. A program built out of a
well chosen set of classes is far easier to understand and get right than one that builds everything
directly in terms of the built-in types. In particular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and statements exist
to help define better classes or to use them more conveniently. By “better,” I mean more correct,
easier to maintain, more efficient, more elegant, easier to use, easier to read, and easier to reason
about. Most programming techniques rely on the design and implementation of specific kinds of
classes. The needs and tastes of programmers vary immensely. Consequently, the support for
classes is extensive. Here, we will just consider the basic support for three important kinds of
classes:

¢ Concrete classes (§3.2.1)

e Abstract classes (§3.2.2)

¢ (lasses in class hierarchies (§3.2.4)
An astounding number of useful classes turn out to be of these three kinds. Even more classes can
be seen as simple variants of these kinds or are implemented using combinations of the techniques
used for these.

3.2.1 Concrete Types

The basic idea of concrete classes is that they behave “just like built-in types.” For example, a
complex number type and an infinite-precision integer are much like built-in int, except of course
that they have their own semantics and sets of operations. Similarly, a vector and a string are much
like built-in arrays, except that they are better behaved (§4.2, §4.3.2, §4.4.1).

The defining characteristic of a concrete type is that its representation is part of its definition. In
many important cases, such as a vector, that representation is only one or more pointers to more
data stored elsewhere, but it is present in each object of a concrete class. That allows implementa-
tions to be optimally efficient in time and space. In particular, it allows us to

* place objects of concrete types on the stack, in statically allocated memory, and in other

objects (§6.4.2);

» refer to objects directly (and not just through pointers or references);

* initialize objects immediately and completely (e.g., using constructors; §2.3.2); and

e copy objects (§3.3).

The representation can be private (as it is for Vector; §2.3.2) and accessible only through the mem-
ber functions, but it is present. Therefore, if the representation changes in any significant way, a
user must recompile. This is the price to pay for having concrete types behave exactly like built-in
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types. For types that don’t change often, and where local variables provide much-needed clarity
and efficiency, this is acceptable and often ideal. To increase flexibility, a concrete type can keep
major parts of its representation on the free store (dynamic memory, heap) and access them through
the part stored in the class object itself. That’s the way vector and string are implemented; they can
be considered resource handles with carefully crafted interfaces.

3.2.1.1 An Arithmetic Type
The “classical user-defined arithmetic type” is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // construct complex from two scalars
complex(double r) :re{r}, im{0} {} 1/l construct complex from one scalar
complex() :re{0}, im{0} {} /I default complex: {0,0}

double real() const { return re; }
void real(double d) { re=d; }
double imag() const { return im; }
void imag(double d) { im=d; }

complex& operator+=(complex z) { re+=z.re, im+=z.im; return =this; } // add to re and im
/l and return the result
complex& operator-=(complex z) { re-=z.re, im—=z.im; return :this; }

complex& operator:=(complex); // defined out-of-class somewhere
complex& operator/=(complex); // defined out-of-class somewhere

b
This is a slightly simplified version of the standard-library complex (§40.4). The class definition
itself contains only the operations requiring access to the representation. The representation is sim-
ple and conventional. For practical reasons, it has to be compatible with what Fortran provided 50
years ago, and we need a conventional set of operators. In addition to the logical demands, complex
must be efficient or it will remain unused. This implies that simple operations must be inlined.
That is, simple operations (such as constructors, +=, and imag()) must be implemented without func-
tion calls in the generated machine code. Functions defined in a class are inlined by default. An
industrial-strength complex (like the standard-library one) is carefully implemented to do appropri-
ate inlining.

A constructor that can be invoked without an argument is called a default constructor. Thus,
complex() is complex’s default constructor. By defining a default constructor you eliminate the pos-
sibility of uninitialized variables of that type.

The const specifiers on the functions returning the real and imaginary parts indicate that these
functions do not modify the object for which they are called.

Many useful operations do not require direct access to the representation of complex, so they
can be defined separately from the class definition:
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complex operator+(complex a, complex b) { return a+=b; }

complex operator—(complex a, complex b) { return a-=b; }

complex operator—(complex a) { return {-a.real(), —a.imag()}; } /l unary minus
complex operator:(complex a, complex b) { return ax=b; }

complex operator/(complex a, complex b) { return a/=b; }

Here, I use the fact that an argument passed by value is copied, so that I can modify an argument
without affecting the caller’s copy, and use the result as the return value.
The definitions of == and != are straightforward:

bool operator==(complex a, complex b) /l equal

{ return a.real()==b.real() && a.imag()==b.imag();

}

bool operator!=(complex a, complex b) /l not equal
{ return !(a==b);

}

complex sqrt(complex);

/...
Class complex can be used like this:

void f(complex z)

{
complex a {2.3}; /l construct {2.3,0.0} from 2.3
complex b {1/a};
complex ¢ {a+z+complex{1,2.3}};
/...
if (c I=b)
c = —(b/a)+2:b;
}

The compiler converts operators involving complex numbers into appropriate function calls. For
example, c!=b means operator!=(c,b) and 1/a means operator/(complex{1},a).

User-defined operators (‘“‘overloaded operators’) should be used cautiously and conventionally.
The syntax is fixed by the language, so you can’t define a unary /. Also, it is not possible to change
the meaning of an operator for built-in types, so you can’t redefine + to subtract ints.

3.2.1.2 A Container

A container is an object holding a collection of elements, so we call Vector a container because it is
the type of objects that are containers. As defined in §2.3.2, Vector isn’t an unreasonable container
of doubles: it is simple to understand, establishes a useful invariant (§2.4.3.2), provides range-
checked access (§2.4.3.1), and provides size() to allow us to iterate over its elements. However, it
does have a fatal flaw: it allocates elements using new but never deallocates them. That’s not a
good idea because although C++ defines an interface for a garbage collector (§34.5), it is not
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guaranteed that one is available to make unused memory available for new objects. In some envi-
ronments you can’t use a collector, and sometimes you prefer more precise control of destruction
(§13.6.4) for logical or performance reasons. We need a mechanism to ensure that the memory
allocated by the constructor is deallocated; that mechanism is a destructor:

class Vector {

private:
doublex elem; /l elem points to an array of sz doubles
int sz;
public:
Vector(int s) :elem{new double[s]}, sz{s} 1/l constructor: acquire resources
{
for (int i=0; i!'=s; ++i) elem[i]=0; // initialize elements
}
“Vector() { delete[] elem; } I/ destructor: release resources

double& operator[](int i);
int size() const;
b

The name of a destructor is the complement operator, ~, followed by the name of the class; it is the
complement of a constructor. Vector’s constructor allocates some memory on the free store (also
called the heap or dynamic store) using the new operator. The destructor cleans up by freeing that
memory using the delete operator. This is all done without intervention by users of Vector. The
users simply create and use Vectors much as they would variables of built-in types. For example:

void fct(int n)

{
Vector v(n);
/l...usev...
{
Vector v2(2+n);
/l...usevandyv2..
}// v2 is destroyed here
/l...usev..

}// v is destroyed here

Vector obeys the same rules for naming, scope, allocation, lifetime, etc., as does a built-in type,
such as int and char. For details on how to control the lifetime of an object, see §6.4. This Vector
has been simplified by leaving out error handling; see §2.4.3.

The constructor/destructor combination is the basis of many elegant techniques. In particular, it
is the basis for most C++ general resource management techniques (§5.2, §13.3). Consider a
graphical illustration of a Vector:
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Vector:

elem: — 0:

1: 2: 3:
sz 6| N o[ O0]o0]o0 |

The constructor allocates the elements and initializes the Vector members appropriately. The de-
structor deallocates the elements. This handle-to-data model is very commonly used to manage
data that can vary in size during the lifetime of an object. The technique of acquiring resources in a
constructor and releasing them in a destructor, known as Resource Acquisition Is Initialization or
RAII allows us to eliminate “‘naked new operations,” that is, to avoid allocations in general code
and keep them buried inside the implementation of well-behaved abstractions. Similarly, “naked
delete operations” should be avoided. Avoiding naked new and naked delete makes code far less
error-prone and far easier to keep free of resource leaks (§5.2).

3.2.1.3 Initializing Containers

A container exists to hold elements, so obviously we need convenient ways of getting elements into
a container. We can handle that by creating a Vector with an appropriate number of elements and
then assigning to them, but typically other ways are more elegant. Here, I just mention two
favorites:

» [Initializer-list constructor: Initialize with a list of elements.

¢ push_back(): Add a new element at the end (at the back of) the sequence.
These can be declared like this:

class Vector {

public:
Vector(std::initializer_list<double>); // initialize with a list
/...
void push_back(double); /I add element at end increasing the size by one
/...
b

The push_back() is useful for input of arbitrary numbers of elements. For example:

Vector read(istream& is)

{
Vector v;
for (double d; is>>d;) // read floating-point values into d
v.push_back(d); /ladddtov
return v;
}

The input loop is terminated by an end-of-file or a formatting error. Until that happens, each num-
ber read is added to the Vector so that at the end, v’s size is the number of elements read. I used a
for-statement rather than the more conventional while-statement to keep the scope of d limited to the
loop. The implementation of push_back() is discussed in §13.6.4.3. The way to provide Vector with
a move constructor, so that returning a potentially huge amount of data from read() is cheap, is
explained in §3.3.2.
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The std::initializer_list used to define the initializer-list constructor is a standard-library type
known to the compiler: when we use a {}-list, such as {1,2,3,4}, the compiler will create an object of
type initializer_list to give to the program. So, we can write:

Vector vi1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = {1.23, 3.45, 6.7, 8}; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializer_list<double> Ist) // initialize with a list
:elem{new double[lst.size()]}, sz{Ist.size()}

{
}

copy(Ist.begin(),Ist.end(),elem); 1/l copy from Ist into elem

3.2.2 Abstract Types

Types such as complex and Vector are called concrete types because their representation is part of
their definition. In that, they resemble built-in types. In contrast, an abstract type is a type that
completely insulates a user from implementation details. To do that, we decouple the interface
from the representation and give up genuine local variables. Since we don’t know anything about
the representation of an abstract type (not even its size), we must allocate objects on the free store
(§3.2.1.2, §11.2) and access them through references or pointers (§2.2.5, §7.2, §7.7).

First, we define the interface of a class Container which we will design as a more abstract ver-
sion of our Vector:

class Container {

public:
virtual double& operator[](int) = 0; /l pure virtual function
virtual int size() const = 0; /l const member function (§3.2.1.1)
virtual "Container() {} // destructor (§3.2.1.2)

h

This class is a pure interface to specific containers defined later. The word virtual means ‘“may be
redefined later in a class derived from this one.” Unsurprisingly, a function declared virtual is
called a virtual function. A class derived from Container provides an implementation for the Con-
tainer interface. The curious =0 syntax says the function is pure virtual; that is, some class derived
from Container must define the function. Thus, it is not possible to define an object that is just a
Container; a Container can only serve as the interface to a class that implements its operator[]() and
size() functions. A class with a pure virtual function is called an abstract class.
This Container can be used like this:

void use(Container& c)

{

const int sz = c.size();

for (int i=0; i'=sz; ++i)
cout << c[i] << "\n';
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Note how use() uses the Container interface in complete ignorance of implementation details. It
uses size() and [] without any idea of exactly which type provides their implementation. A class
that provides the interface to a variety of other classes is often called a polymorphic type (§20.3.2).

As is common for abstract classes, Container does not have a constructor. After all, it does not
have any data to initialize. On the other hand, Container does have a destructor and that destructor
is virtual. Again, that is common for abstract classes because they tend to be manipulated through
references or pointers, and someone destroying a Container through a pointer has no idea what
resources are owned by its implementation; see also §3.2.4.

A container that implements the functions required by the interface defined by the abstract class
Container could use the concrete class Vector:

class Vector_container : public Container { // Viector_container implements Container
Vector v;

public:
Vector_container(int s) : v(s) { } // Vector of s elements
“Vector_container() {}

double& operator[](int i) { return v[i]; }
int size() const { return v.size(); }

b
The :public can be read as “‘is derived from™ or “is a subtype of.”” Class Vector_container is said to
be derived from class Container, and class Container is said to be a base of class Vector_container.
An alternative terminology calls Vector_container and Container subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The members operatorf]() and size() are said to override the corresponding members in the base
class Container (§20.3.2). The destructor ("Vector_container()) overrides the base class destructor
("Container()). Note that the member destructor ("Vector()) is implicitly invoked by its class’s de-
structor ("Vector_container()).

For a function like use(Container&) to use a Container in complete ignorance of implementation
details, some other function will have to make an object on which it can operate. For example:

void g()

{
Vector_container vc {10, 9, 8,7, 6, 5, 4, 3, 2, 1, 0};
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it will
work just as well for a different implementation of a Container. For example:

class List_container : public Container {// List_container implements Container
std::list<double> Id; // (standard-library) list of doubles (§4.4.2)
public:
List_container() { } /I empty List
List_container(initializer_list<double> il) : Id{il} { }
“List_container() {}
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double& operator[](int i);
int size() const { return Id.size(); }

b
double& List_container::operator[](int i)
{
for (auto& x : Id) {
if (i==0) return x;
—i;
}
throw out_of_range("List container");
}

Here, the representation is a standard-library list<double>. Usually, I would not implement a con-
tainer with a subscript operation using a list, because performance of list subscripting is atrocious
compared to vector subscripting. However, here I just wanted to show an implementation that is
radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{
List_containerlc={1,2,3,4,5,6,7,8,9};
use(lc);
}
The point is that use(Container&) has no idea if its argument is a Vector_container, a List_container,
or some other kind of container; it doesn’t need to know. It can use any kind of Container. It knows
only the interface defined by Container. Consequently, use(Container&) needn’t be recompiled if the
implementation of List_container changes or a brand-new class derived from Container is used.
The flip side of this flexibility is that objects must be manipulated through pointers or references
(83.3, §20.4).

3.2.3 Virtual Functions

Consider again the use of Container:

void use(Container& c)

{
const int sz = c.size();
for (int i=0; i'=sz; ++i)
cout << c[i] << "\n';
}

How is the call c[i] in use() resolved to the right operator[]()? When h() calls use(), List_container’s
operator[]() must be called. When g() calls use(), Vector_container’s operator[]() must be called. To
achieve this resolution, a Container object must contain information to allow it to select the right
function to call at run time. The usual implementation technique is for the compiler to convert the
name of a virtual function into an index into a table of pointers to functions. That table is usually



68 A Tour of C++: Abstraction Mechanisms Chapter 3

called the virtual function table or simply the vtbl. Each class with virtual functions has its own vtbl
identifying its virtual functions. This can be represented graphically like this:

Vector_container: vtbl:
—_—t —_—t ’ Vector_container::operator[]() ‘
v
N ’ Vector_container::size() ‘
—_|
’ Vector_container::"Vector_container() ‘
List_container: vibl:
—t—» —t—» ’ List_container::operator[]() ‘
—
Id i ’ List_container::size() ‘
—_|

’ List_container::"List_container() ‘

The functions in the vtbl allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. The implementation of the caller needs only to
know the location of the pointer to the vtbl in a Container and the index used for each virtual func-
tion. This virtual call mechanism can be made almost as efficient as the “normal function call”
mechanism (within 25%). Its space overhead is one pointer in each object of a class with virtual
functions plus one vtbl for each such class.

3.2.4 Class Hierarchies

The Container example is a very simple example of a class hierarchy. A class hierarchy is a set
of classes ordered in a lattice created by derivation (e.g., : public). We use class hierarchies to rep-
resent concepts that have hierarchical relationships, such as “A fire engine is a kind of a truck
which is a kind of a vehicle” and “A smiley face is a kind of a circle which is a kind of a shape.”
Huge hierarchies, with hundreds of classes, that are both deep and wide are common. As a semi-
realistic classic example, let’s consider shapes on a screen:

Shape

N

Circle Triangle

e

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from class
Shape. To represent that simple diagram in code, we must first specify a class that defines the gen-
eral properties of all shapes:



Section 3.2.4 Class Hierarchies 69

class Shape {

public:
virtual Point center() const =0; / pure virtual
virtual void move(Point to) =0;

virtual void draw() const = 0; // draw on current "Canvas"
virtual void rotate(int angle) = 0;

virtual “Shape() {} /l destructor
/...

b
Naturally, this interface is an abstract class: as far as representation is concerned, nothing (except
the location of the pointer to the vtbl) is common for every Shape. Given this definition, we can
write general functions manipulating vectors of pointers to shapes:

void rotate_all(vector<Shape:>& v, int angle) // rotate v's elements by angle degrees

{
for (auto p : v)
p—>rotate(angle);

}

To define a particular shape, we must say that it is a Shape and specify its particular properties
(including its virtual functions):

class Circle : public Shape {
public:
Circle(Point p, int rr); 1/ constructor

Point center() const { return x; }
void move(Point to) { x=to; }

void draw() const;

void rotate(int) {} /I nice simple algorithm
private:

Point x; // center

intr; // radius

b
So far, the Shape and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

class Smiley : public Circle { // use the circle as the base for a face
public:
Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

“Smiley()
{

delete mouth;
for (auto p : eyes) delete p;
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void move(Point to);

void draw() const;
void rotate(int);

void add_eye(Shape: s) { eyes.push_back(s); }
void set_mouth(Shape: s);

virtual void wink(int i); /l wink eye number i
/...

private:
vector<Shape:> eyes; // usually two eyes

Shape* mouth;

5

The push_back() member function adds its argument to the vector (here, eyes), increasing that
vector’s size by one.
We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:

void Smiley::draw()

{
Circle::draw();
for (auto p : eyes)
p—>draw();
mouth->draw();
}

Note the way that Smiley keeps its eyes in a standard-library vector and deletes them in its de-
structor. Shape’s destructor is virtual and Smiley’s destructor overrides it. A virtual destructor is
essential for an abstract class because an object of a derived class is usually manipulated through
the interface provided by its abstract base class. In particular, it may be deleted through a pointer to
a base class. Then, the virtual function call mechanism ensures that the proper destructor is called.
That destructor then implicitly invokes the destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth appropri-
ately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation. This
gives great flexibility with corresponding opportunities for confusion and poor design. See Chapter
21. A class hierarchy offers two kinds of benefits:

» [Interface inheritance: An object of a derived class can be used wherever an object of a base
class is required. That is, the base class acts as an interface for the derived class. The Con-
tainer and Shape classes are examples. Such classes are often abstract classes.

e Implementation inheritance: A base class provides functions or data that simplifies the
implementation of derived classes. Smiley’s uses of Circle’s constructor and of Circle::draw()
are examples. Such base classes often have data members and constructors.

Concrete classes — especially classes with small representations — are much like built-in types: we
define them as local variables, access them using their names, copy them around, etc. Classes in
class hierarchies are different: we tend to allocate them on the free store using new, and we access
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them through pointers or references. For example, consider a function that reads data describing
shapes from an input stream and constructs the appropriate Shape objects:

enum class Kind { circle, triangle, smiley };

Shape* read_shape(istream& is) // read shape descriptions from input stream is

{

/ ... read shape header from is and find its Kind k ...

switch (k) {
case Kind::circle:
/ read circle data {Point,int} into p and r
return new Circle{p,r};
case Kind::triangle:
1/ read triangle data {Point,Point,Point} into p1, p2, and p3
return new Triangle{p1,p2,p3};
case Kind::smiley:
1/l read smiley data {Point,int,Shape,Shape,Shape} into p, r, e1 ,e2, and m
Smiley+ ps = new Smiley{p,r};
ps—>add_eye(e1);
ps—>add_eye(e2);
ps—>set_mouth(m);

return ps;
}
}
A program may use that shape reader like this:
void user()
{
std::vector<Shape:> v;
while (cin)
v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element
for (auto p : v) delete p; // remember to delete elements

}

Obviously, the example is simplified — especially with respect to error handling — but it vividly
illustrates that user() has absolutely no idea of which kinds of shapes it manipulates. The user()
code can be compiled once and later used for new Shapes added to the program. Note that there are
no pointers to the shapes outside user(), so user() is responsible for deallocating them. This is done
with the delete operator and relies critically on Shape’s virtual destructor. Because that destructor is
virtual, delete invokes the destructor for the most derived class. This is crucial because a derived
class may have acquired all kinds of resources (such as file handles, locks, and output streams) that
need to be released. In this case, a Smiley deletes its eyes and mouth objects.

Experienced programmers will notice that I left open two obvious opportunities for mistakes:

* A user might fail to delete the pointer returned by read_shape().

* The owner of a container of Shape pointers might not delete the objects pointed to.
In that sense, functions returning a pointer to an object allocated on the free store are dangerous.
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One solution to both problems is to return a standard-library unique_ptr (§5.2.1) rather than a
“naked pointer” and store unique_ptrs in the container:

unique_ptr<Shape> read_shape(istream& is) // read shape descriptions from input stream is

{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:
// read circle data {Point,int} into p and r

return unique_ptr<Shape>{new Circle{p,r}}; /1 §5.2.1
/...
}
void user()
{
vector<unique_ptr<Shape>> v;
while (cin)
v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element

} /1 all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete the object when it is no longer needed,
that is, when its unique_ptr goes out of scope.

For the unique_ptr version of user() to work, we need versions of draw_all() and rotate_all() that
accept vector<unique_ptr<Shape>>s. Writing many such _all() functions could become tedious, so
§3.4.3 shows an alternative.

3.3 Copy and Move

By default, objects can be copied. This is true for objects of user-defined types as well as for built-
in types. The default meaning of copy is memberwise copy: copy each member. For example,
using complex from §3.2.1.1:

void test(complex z1)

{
complex z2 {z1};  // copy initialization
complex z3;
23 = z2; 1/l copy assignment
/...

}

Now z1, z2, and 23 have the same value because both the assignment and the initialization copied
both members.

When we design a class, we must always consider if and how an object might be copied. For
simple concrete types, memberwise copy is often exactly the right semantics for copy. For some
sophisticated concrete types, such as Vector, memberwise copy is not the right semantics for copy,
and for abstract types it almost never is.
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3.3.1 Copying Containers

When a class is a resource handle, that is, it is responsible for an object accessed through a pointer,
the default memberwise copy is typically a disaster. Memberwise copy would violate the resource
handle’s invariant (§2.4.3.2). For example, the default copy would leave a copy of a Vector refer-
ring to the same elements as the original:

void bad_copy(Vector v1)

{
Vector v2 = vi; // copy v1’s representation into v2
v1[0] = 2; // v2[0] is now also 2!
v2[1] =3; // vi[1] is now also 3!
}
Assuming that v1 has four elements, the result can be represented graphically like this:
vi v2:
(23] [ |

Fortunately, the fact that Vector has a destructor is a strong hint that the default (memberwise) copy
semantics is wrong and the compiler should at least warn against this example (§17.6). We need to
define better copy semantics.

Copying of an object of a class is defined by two members: a copy constructor and a copy
assignment:

class Vector {

private:
double: elem; // elem points to an array of sz doubles
int sz;
public:
Vector(int s); // constructor: establish invariant, acquire resources
“Vector() { delete[] elem; } // destructor: release resources
Vector(const Vector& a); 1/ copy constructor

Vector& operator=(const Vector& a);  // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
b
A suitable definition of a copy constructor for Vector allocates the space for the required number of

elements and then copies the elements into it, so that after a copy each Vector has its own copy of
the elements:
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Vector::Vector(const Vector& a)  // copy constructor

:elem{new double[sz]}, // allocate space for elements
sz{a.sz}
{
for (int i=0; i'=sz; ++i) /l copy elements
elem[i] = a.elem[i];
}
The result of the v2=v1 example can now be presented as:
vi: v2:
e
L2l [ [ JL I3[ |

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::operator=(const Vector& a) /l copy assignment
{

doublex p = new double[a.sz];

for (int i=0; i'=a.sz; ++i)

pli] = a.elem[i];

delete[] elem; // delete old elements

elem = p;

sz = a.sz;

return =this;

}

Chapter 3

The name this is predefined in a member function and points to the object for which the member

function is called.

A copy constructor and a copy assignment for a class X are typically declared to take an argu-

ment of type const X&.

3.3.2 Moving Containers

We can control copying by defining a copy constructor and a copy assignment, but copying can be

costly for large containers. Consider:

Vector operator+(const Vector& a, const Vector& b)
{
if (a.size()!=b.size())
throw Vector_size_mismatch{};

Vector res(a.size());

for (int i=0; i'=a.size(); ++i)
res[i]=ali]+b[i];

return res;
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Returning from a + involves copying the result out of the local variable res and into some place
where the caller can access it. We might use this + like this:

void f(const Vector& x, const Vector& y, const Vector& z)

{
Vector r;
/...
r = X+y+2;
/...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a Vector is
large, say, 10,000 doubles, that could be embarrassing. The most embarrassing part is that res in
operator+() is never used again after the copy. We didn’t really want a copy; we just wanted to get
the result out of a function: we wanted to move a Vector rather than to copy it. Fortunately, we can
state that intent:

class Vector {
/...

Vector(const Vector& a); 1/l copy constructor
Vector& operator=(const Vector& a); 1/l copy assignment

Vector(Vector&& a); /l move constructor
Vector& operator=(Vector&& a); /I move assignment
b
Given that definition, the compiler will choose the move constructor to implement the transfer of
the return value out of the function. This means that r=x+y+z will involve no copying of Vectors.
Instead, Vectors are just moved.
As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)

:elem{a.elem}, /] "grab the elements" from a
sz{a.sz}

{
a.elem = nullptr; // now a has no elements
a.sz=0;

}

The && means “‘rvalue reference’ and is a reference to which we can bind an rvalue (§6.4.1). The
word “‘rvalue” is intended to complement “Ivalue,” which roughly means ‘“‘something that can
appear on the left-hand side of an assignment.” So an rvalue is — to a first approximation — a value
that you can’t assign to, such as an integer returned by a function call, and an rvalue reference is a
reference to something that nobody else can assign to. The res local variable in operator+() for Vec-
tors is an example.

A move constructor does not take a const argument: after all, a move constructor is supposed to
remove the value from its argument. A move assignment is defined similarly.

A move operation is applied when an rvalue reference is used as an initializer or as the right-
hand side of an assignment.



76 A Tour of C++: Abstraction Mechanisms Chapter 3

After a move, a moved-from object should be in a state that allows a destructor to be run. Typi-
cally, we should also allow assignment to a moved-from object (§17.5, §17.6.2).

Where the programmer knows that a value will not be used again, but the compiler can’t be
expected to be smart enough to figure that out, the programmer can be specific:

Vector f()
{
Vector x(1000);
Vector y(1000);
Vector z(1000);
/...
z=X; /l we get a copy
y = std::move(x); // we get a move
/...
return z; /l we get a move

b
The standard-library function move() returns an rvalue reference to its argument.
Just before the return we have:
z: X: y:

00| [ouiee] 0] [ [1000]

When z is destroyed, it too has been moved from (by the return) so that, like x, it is empty (it holds
no elements).

3.3.3 Resource Management

By defining constructors, copy operations, move operations, and a destructor, a programmer can
provide complete control of the lifetime of a contained resource (such as the elements of a con-
tainer). Furthermore, a move constructor allows an object to move simply and cheaply from one
scope to another. That way, objects that we cannot or would not want to copy out of a scope can be
simply and cheaply moved out instead. Consider a standard-library thread representing a concur-
rent activity (§5.3.1) and a Vector of a million doubles. We can’t copy the former and don’t want to
copy the latter.

std::vector<thread> my_threads;

Vector init(int n)

{
thread t {heartbeat}; /l run heartbeat concurrently (on its own thread)
my_threads.push_back(move(t)); // move tinto my_threads
// ... more initialization ...
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Vector vec(n);
for (int i=0; i<vec.size(); ++i) vecli] = 777;
return vec; /Il move res out of init()

}

auto v = init(); // start heartbeat and initialize v

This makes resource handles, such as Vector and thread, an alternative to using pointers in many
cases. In fact, the standard-library ‘““smart pointers,” such as unique_ptr, are themselves resource
handles (§5.2.1).

I used the standard-library vector to hold the threads because we don’t get to parameterize
Vector with an element type until §3.4.1.

In very much the same way as new and delete disappear from application code, we can make
pointers disappear into resource handles. In both cases, the result is simpler and more maintainable
code, without added overhead. In particular, we can achieve strong resource safety; that is, we can
eliminate resource leaks for a general notion of a resource. Examples are vectors holding memory,
threads holding system threads, and fstreams holding file handles.

3.3.4 Suppressing Operations

Using the default copy or move for a class in a hierarchy is typically a disaster: given only a pointer
to a base, we simply don’t know what members the derived class has (§3.2.2), so we can’t know
how to copy them. So, the best thing to do is usually to delete the default copy and move opera-
tions, that is, to eliminate the default definitions of those two operations:

class Shape {

public:
Shape(const Shape&) =delete; /I no copy operations
Shape& operator=(const Shape&) =delete;

Shape(Shape&&) =delete; // no move operations
Shape& operator=(Shape&&) =delete;

“Shape();
/...

b
Now an attempt to copy a Shape will be caught by the compiler. If you need to copy an object in a
class hierarchy, write some kind of clone function (§22.2.4).

In this particular case, if you forgot to delete a copy or move operation, no harm is done. A
move operation is not implicitly generated for a class where the user has explicitly declared a de-
structor. Furthermore, the generation of copy operations is deprecated in this case (§44.2.3). This
can be a good reason to explicitly define a destructor even where the compiler would have implic-
itly provided one (§17.2.3).

A base class in a class hierarchy is just one example of an object we wouldn’t want to copy. A
resource handle generally cannot be copied just by copying its members (§5.2, §17.2.2).

The =delete mechanism is general, that is, it can be used to suppress any operation (§17.6.4).
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3.4 Templates

Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a general
concept, independent of the notion of a floating-point number. Consequently, the element type of a
vector ought to be represented independently. A template is a class or a function that we parame-
terize with a set of types or values. We use templates to represent concepts that are best understood
as something very general from which we can generate specific types and functions by specifying
arguments, such as the element type double.

3.4.1 Parameterized Types

We can generalize our vector-of-doubles type to a vector-of-anything type by making it a template
and replacing the specific type double with a parameter. For example:

template<typename T>
class Vector {

private:
T+ elem; // elem points to an array of sz elements of type T
int sz;
public:
Vector(int s); // constructor: establish invariant, acquire resources

“Vector() { delete[] elem; } // destructor: release resources
/ ... copy and move operations ...

T& operator[](int i);
const T& operator[](int i) const;
int size() const { return sz; }
b
The template<typename T> prefix makes T a parameter of the declaration it prefixes. It is C++’s ver-
sion of the mathematical “for all T’ or more precisely “for all types T.”
The member functions might be defined similarly:

template<typename T>
Vector<T>::Vector(int s)

{
if (s<0) throw Negative_size{};
elem = new T[s];
sz=s;

}

template<typename T>
const T& Vector<T>::operator[](int i) const
{
if (i<0 Il size()<=i)
throw out_of_range{"Vector::operator[]"};
return elem(i];
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Given these definitions, we can define Vectors like this:

Vector<char> vc(200); 1/ vector of 200 characters
Vector<string> vs(17); 1/ vector of 17 strings
Vector<list<int>> vli(45); 1/ vector of 45 lists of integers

The >> in Vector<list<int>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.
We can use Vectors like this:

void write(const Vector<string>& vs) // Vector of some strings

{
for (int i = 0; i!l=vs.size(); ++i)
cout << vs[i] << "\n';

}
To support the range-for loop for our Vector, we must define suitable begin() and end() functions:

template<typename T>
T begin(Vector<T>& x)
{

}

return &x[0]; // pointer to first element

template<typename T>
T end(Vector<T>& x)

{

return x.begin()+x.size(); / pointer to one-past-last element

}
Given those, we can write:

void f2(const Vector<string>& vs) // Vector of some strings

{

for (auto& s : vs)
cout <<s <<'\n';

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates (§4.4,
§23.2, Chapter 31).

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to
“handwritten code” (§23.2.2).

3.4.2 Function Templates

Templates have many more uses than simply parameterizing a container with an element type. In
particular, they are extensively used for parameterization of both types and algorithms in the stan-
dard library (§4.4.5, §4.5.5). For example, we can write a function that calculates the sum of the
element values of any container like this:
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template<typename Container, typename Value>
Value sum(const Container& c, Value v)

{
for (auto x : ¢)
V4+=X;
return v;
}

The Value template argument and the function argument v are there to allow the caller to specify the
type and initial value of the accumulator (the variable in which to accumulate the sum):

void user(Vector<int>& vi, std::listcdouble>& Id, std::vector<complex<double>>& vc)

{

int x = sum(vi,0); 1/l the sum of a vector of ints (add ints)
double d = sum(vi,0.0); // the sum of a vector of ints (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles

auto z = sum(vc,complex<double>{}); // the sum of a vector of complex<double>
// the initial value is {0.0,0.0}

}

The point of adding ints in a double would be to gracefully handle a number larger than the largest
int. Note how the types of the template arguments for sum<T,V> are deduced from the function
arguments. Fortunately, we do not need to explicitly specify those types.

This sum() is a simplified version of the standard-library accumulate() (§40.6).

3.4.3 Function Objects

One particularly useful kind of template is the function object (sometimes called a functor), which
is used to define objects that can be called like functions. For example:

template<typename T>
class Less_than {
const Tval; // value to compare against
public:
Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { return x<val; } // call operator

b
The function called operator() implements the ““function call,” “call,”” or ““application” operator ().
We can define named variables of type Less_than for some argument type:

Less_than<int> Iti {42}; 1 Iti(i) will compare i to 42 using < (i<42)
Less_than<string> Its {"Backus"}; // Its(s) will compare s to "Backus" using < (s<"Backus")

We can call such an object, just as we call a function:

void fct(int n, const string & s)

{
bool b1 = Iti(n); // true if n<42
bool b2 = Its(s); // true if s<"Backus"
/...
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Such function objects are widely used as arguments to algorithms. For example, we can count the
occurrences of values for which a predicate returns true:

template<typename C, typename P>
int count(const C& c, P pred)

{
intcnt=0;
for (const auto& x : ¢)
if (pred(x))
++cnt;
return cnt;
}

A predicate is something that we can invoke to return true or false. For example:

void f(const Vector<int>& vec, const list<string>& Ist, int x, const string& s)
{ cout << "number of values less than " << x
<< ": " << count(vec,Less_than<int>{x})
<<'\n';
cout << "number of values less than " <<s
<< ": " << count(Ist,Less_than<string>{s})
<<'\n';
}
Here, Less_than<int>{x} constructs an object for which the call operator compares to the int called x;
Less_than<string>{s} constructs an object that compares to the string called s. The beauty of these
function objects is that they carry the value to be compared against with them. We don’t have to
write a separate function for each value (and each type), and we don’t have to introduce nasty
global variables to hold values. Also, for a simple function object like Less_than inlining is simple,
so that a call of Less_than is far more efficient than an indirect function call. The ability to carry
data plus their efficiency make function objects particularly useful as arguments to algorithms.
Function objects used to specify the meaning of key operations of a general algorithm (such as
Less_than for count()) are often referred to as policy objects.
We have to define Less_than separately from its use. That could be seen as inconvenient. Con-
sequently, there is a notation for implicitly generating function objects:

void f(const Vector<int>& vec, const list<string>& Ist, int x, const string& s)

{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ return a<x; })
<< '\n'%
cout << "number of values less than " << s
<< ": " << count(Ist,[&](const string& a){ return a<s; })
<<'\n';

}

The notation [&](int a){ return a<x; } is called a lambda expression (§11.4). It generates a function
object exactly like Less_than<int>{x}. The [&] is a capture list specifying that local names used
(such as x) will be passed by reference. Had we wanted to “capture” only x, we could have said
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so: [&x]. Had we wanted to give the generated object a copy of x, we could have said so: [=x]. Cap-
ture nothing is [], capture all local names used by reference is [&], and capture all local names used
by value is [=].

Using lambdas can be convenient and terse, but also obscure. For nontrivial actions (say, more
than a simple expression), I prefer to name the operation so as to more clearly state its purpose and
to make it available for use in several places in a program.

In §3.2.4, we noticed the annoyance of having to write many functions to perform operations on
elements of vectors of pointers and unique_ptrs, such as draw_all() and rotate_all(). Function objects
(in particular, lambdas) can help by allowing us to separate the traversal of the container from the
specification of what is to be done with each element.

First, we need a function that applies an operation to each object pointed to by the elements of a
container of pointers:

template<class C, class Oper>

void for_all(C& c, Oper op) /l assume that C is a container of pointers
{
for (auto& x : ¢)
op(*x); /I pass op() a reference to each element pointed to
}
Now, we can write a version of user() from §3.2.4 without writing a set of _all functions:
void user()
{
vector<unique_ptr<Shape>> v;
while (cin)
v.push_back(read_shape(cin));
for_all(v,[1(Shape& s){ s.draw(); }); Il draw_all()

for_all(v,[]1(Shape& s){ s.rotate(45); }); // rotate_all(45)
}

I pass a reference to Shape to a lambda so that the lambda doesn’t have to care exactly how the
objects are stored in the container. In particular, those for_all() calls would still work if I changed v
to a vector<Shape:>.

3.4.4 Variadic Templates

A template can be defined to accept an arbitrary number of arguments of arbitrary types. Such a
template is called a variadic template. For example:

template<typename T, typename... Tail>
void f(T head, Tail... tail)

{
g(head); // do something to head
f(tail...); // try again with tail

}

void f() { } // do nothing

The key to implementing a variadic template is to note that when you pass a list of arguments to it,
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you can separate the first argument from the rest. Here, we do something to the first argument (the
head) and then recursively call f() with the rest of the arguments (the tail). The ellipsis, ..., is used to
indicate “‘the rest” of a list. Eventually, of course, tail will become empty and we need a separate
function to deal with that.

We can call this f() like this:

int main()

{

cout << "first: ";
f(1,2.2,"hello");

cout << "\nsecond: "
f(0.2,'c',"yuck!",0,1,2);
cout << "\n";

}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which will call
f(). What might the call g(head) do? Obviously, in a real program it will do whatever we wanted
done to each argument. For example, we could make it write its argument (here, head) to output:

template<typename T>
void g(T x)
{

}
Given that, the output will be:

cout<<x<<"';

first: 1 2.2 hello
second: 0.2 c yuck! 012

It seems that f() is a simple variant of printf() printing arbitrary lists or values — implemented in three
lines of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can accept any
arguments you care to give them. The weakness is that the type checking of the interface is a possi-
bly elaborate template program. For details, see §28.6. For examples, see §34.2.4.2 (N-tuples) and
Chapter 29 (N-dimensional matrices).

3.4.5 Aliases

Surprisingly often, it is useful to introduce a synonym for a type or a template (§6.5). For example,
the standard header <cstddef> contains a definition of the alias size_t, maybe:

using size_t = unsigned int;

The actual type named size_t is implementation-dependent, so in another implementation size_t
may be an unsigned long. Having the alias size_t allows the programmer to write portable code.

It is very common for a parameterized type to provide an alias for types related to their template
arguments. For example:
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template<typename T>
class Vector {

public:
using value_type =T;
...

b

In fact, every standard-library container provides value_type as the name of its value type (§31.3.1).
This allows us to write code that will work for every container that follows this convention. For
example:

template<typename C>
using Element_type = typename C::value_type;

template<typename Container>

void algo(Container& c)

{
Vector<Element_type<Container>> vec; / keep results here
/...

}

The aliasing mechanism can be used to define a new template by binding some or all template argu-
ments. For example:

template<typename Key, typename Value>
class Map {
...

5

template<typename Value>
using String_map = Map<string,Value>;

String_map<int> m;// m is a Map<string,int>

See §23.6.

3.5 Advice

(1]
(2]
(3]

(4]
(5]
(6]

(7]

Express ideas directly in code; §3.2.

Define classes to represent application concepts directly in code; §3.2.

Use concrete classes to represent simple concepts and performance-critical components;
§3.2.1.

Avoid “naked” new and delete operations; §3.2.1.2.

Use resource handles and RAII to manage resources; §3.2.1.2.

Use abstract classes as interfaces when complete separation of interface and implementation
is needed; §3.2.2.

Use class hierarchies to represent concepts with inherent hierarchical structure; §3.2.4.
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(8]

(9]
[10]
(1]

[12]
[13]

[14]
[15]

When designing a class hierarchy, distinguish between implementation inheritance and inter-
face inheritance; §3.2.4.

Control construction, copy, move, and destruction of objects; §3.3.

Return containers by value (relying on move for efficiency); §3.3.2.

Provide strong resource safety; that is, never leak anything that you think of as a resource;
§3.3.3.

Use containers, defined as resource handle templates, to hold collections of values of the
same type; §3.4.1.

Use function templates to represent general algorithms; §3.4.2.

Use function objects, including lambdas, to represent policies and actions; §3.4.3.

Use type and template aliases to provide a uniform notation for types that may vary among
similar types or among implementations; §3.4.5.
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Why waste time learning
when ignorance is instantaneous?
— Hobbes

e Libraries
Standard-Library Overview; The Standard-Library Headers and Namespace
e Strings
e Stream I/O
Output; Input; I/O of User-Defined Types
¢ Containers
vector; list; map; unordered_map; Container Overview
e Algorithms
Use of Iterators; Iterator Types; Stream Iterators; Predicates; Algorithm Overview; Con-
tainer Algorithms
¢ Advice

4.1 Libraries

No significant program is written in just a bare programming language. First, a set of libraries is
developed. These then form the basis for further work. Most programs are tedious to write in the
bare language, whereas just about any task can be rendered simple by the use of good libraries.
Continuing from Chapters 2 and 3, this chapter and the next give a quick tour of key standard-
library facilities. I assume that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before
continuing. Even if you have programmed before, the libraries you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this “lightning tour”
confusing, you might skip to the more systematic and bottom-up language presentation starting in
Chapter 6. Similarly, a more systematic description of the standard library starts in Chapter 30.
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I very briefly present useful standard-library types, such as string, ostream, vector, map (this
chapter), unique_ptr, thread, regex, and complex (Chapter 5), as well as the most common ways of
using them. Doing this allows me to give better examples in the following chapters. As in Chapter
2 and Chapter 3, you are strongly encouraged not to be distracted or discouraged by an incomplete
understanding of details. The purpose of this chapter is to give you a taste of what is to come and
to convey a basic understanding of the most useful library facilities.

The specification of the standard library is almost two thirds of the ISO C++ standard. Explore
it, and prefer it to home-made alternatives. Much though have gone into its design, more still into
its implementations, and much effort will go into its maintenance and extension.

The standard-library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard-library components, most implementations offer “‘graphical user
interface” systems (GUIs), Web interfaces, database interfaces, etc. Similarly, most application
development environments provide ‘“‘foundation libraries” for corporate or industrial “‘standard”
development and/or execution environments. Here, I do not describe such systems and libraries.
The intent is to provide a self-contained description of C++ as defined by the standard and to keep
the examples portable, except where specifically noted. Naturally, a programmer is encouraged to
explore the more extensive facilities available on most systems.

4.1.1 Standard-Library Overview

The facilities provided by the standard library can be classified like this:

* Run-time language support (e.g., for allocation and run-time type information); see §30.3.

* The C standard library (with very minor modifications to minimize violations of the type
system); see Chapter 43.

e Strings and I/O streams (with support for international character sets and localization); see
Chapter 36, Chapter 38, and Chapter 39. I/O streams is an extensible framework to which
users can add their own streams, buffering strategies, and character sets.

* A framework of containers (such as vector and map) and algorithms (such as find(), sort(),
and merge()); see §4.4, §4.5, Chapters 31-33. This framework, conventionally called the
STL [Stepanov,1994], is extensible so users can add their own containers and algorithms.

e Support for numerical computation (such as standard mathematical functions, complex
numbers, vectors with arithmetic operations, and random number generators); see §3.2.1.1
and Chapter 40.

* Support for regular expression matching; see §5.5 and Chapter 37.

*  Support for concurrent programming, including threads and locks; see §5.3 and Chapter 41.
The concurrency support is foundational so that users can add support for new models of
concurrency as libraries.

e Utilities to support template metaprogramming (e.g., type traits; §5.4.2, §28.2.4, §35.4),
STL-style generic programming (e.g., pair; §5.4.3, §34.2.4.1), and general programming
(e.g., clock; §5.4.1, §35.2).

e “Smart pointers” for resource management (e.g., unique_ptr and shared_ptr; §5.2.1, §34.3)
and an interface to garbage collectors (§34.5).

* Special-purpose containers, such as array (§34.2.1), bitset (§34.2.2), and tuple (§34.2.4.2).
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The main criteria for including a class in the library were that:
* it could be helpful to almost every C++ programmer (both novices and experts),
* it could be provided in a general form that did not add significant overhead compared to a
simpler version of the same facility, and
» that simple uses should be easy to learn (relative to the inherent complexity of their task).
Essentially, the C++ standard library provides the most common fundamental data structures
together with the fundamental algorithms used on them.

4.1.2 The Standard-library Headers and Namespace
Every standard-library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.
The standard library is defined in a namespace (§2.4.2, §14.3.1) called std. To use standard
library facilities, the std:: prefix can be used:

std::string s {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is peace", "Freedom is Slavery", "Ignorance is Strength"};

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers (as listed in §4.4.5, §4.5.5, and §30.2) and make the names
they declare accessible. For example:

#include<string> /I make the standard string facilities accessible
using namespace std; /I make std names available without std:: prefix

string s {"C++ is a general-purpose programming language"};  // OK: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, in this book, I use the standard library almost exclusively and it is good to know what it
offers. So, I don’t prefix every use of a standard library name with std::. Nor do I #include the
appropriate headers in every example. Assume that done.

Here is a selection of standard-library headers, all supplying declarations in namespace std:

Selected Standard Library Headers (continues)
<algorithm>  copy(), find(), sort() §32.2 §is0.25
<array> array §34.2.1 §is0.23.3.2
<chrono> duration, time_point §35.2 §is0.20.11.2
<cmath> sqrt(), pow() §40.3 §i50.26.8
<complex> complex, sqrt(), pow() §40.4 §i50.26.8
<fstream> fstream, ifstream, ofstream  §38.2.1 §is0.27.9.1
<future> future, promise §5.3.5 §150.30.6
<iostream> istream, ostream, cin, cout §38.1 §is0.27.4
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Selected Standard Library Headers (continued)
<map> map, multimap §31.4.3 §is0.23.4.4
<memory> unique_ptr, shared_ptr, allocator §5.2.1 §i50.20.6
<random> default_random_engine, normal_distribution §40.7 §150.26.5
<regex> regex, smatch Chapter 37  §is0.28.8
<string> string, basic_string Chapter 36 §is0.21.3
<set> set, multiset §31.4.3 §i150.23.4.6
<sstream> istrstream, ostrstream §38.2.2 §150.27.8
<thread> thread §5.3.1 §i150.30.3
<unordered_map>  unordered_map, unordered_multimap §31.4.3.2 §is0.23.5.4
<utility> move(), swap(), pair §35.5 §is0.20.1
<vector> vector §31.4 §i150.23.3.6

This listing is far from complete; see §30.2 for more information.

4.2 Strings

The standard library provides a string type to complement the string literals. The string type pro-
vides a variety of useful string operations, such as concatenation. For example:

string compose(const string& name, const string& domain)

{

return name + '@' + domain;

}

auto addr = compose("dmr","bell-labs.com");

Here, addr is initialized to the character sequence dmr@bell-labs.com. ‘“Addition” of strings means
concatenation. You can concatenate a string, a string literal, a C-style string, or a character to a
string. The standard string has a move constructor so returning even long strings by value is effi-
cient (§3.3.2).

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the += operation. For example:

void m2(string& s1, string& s2)
{

s1=s1+"n'; // append newline
s2 +="\n'; /I append newline

}

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more explicit about what it does, more concise, and possibly more efficient.

A string is mutable. In addition to = and +=, subscripting (using []) and substring operations are
supported. The standard-library string is described in Chapter 36. Among other useful features, it
provides the ability to manipulate substrings. For example:



Section 4.2 Strings 91

string name = "Niels Stroustrup";

void m3()

{
string s = name.substr(6,10); /I s = "Stroustrup”
name.replace(0,5,"nicholas"); /l name becomes "nicholas Stroustrup"
name[0] = toupper(name[0]); /I name becomes "Nicholas Stroustrup"

}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second is the length of the desired
substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with a value. In this case, the substring starting at 0
with length 5 is Niels; it is replaced by nicholas. Finally, I replace the initial character with its
uppercase equivalent. Thus, the final value of name is Nicholas Stroustrup. Note that the replace-
ment string need not be the same size as the substring that it is replacing.

Naturally, strings can be compared against each other and against string literals. For example:

string incantation;

void respond(const string& answer)

{ if (answer == incantation) {
1/l perform magic
}
else if (answer == "yes") {
/...
}
/...
}

The string library is described in Chapter 36. The most common techniques for implementing
string are presented in the String example (§19.3).

4.3 Stream I/O

The standard library provides formatted character input and output through the iostream library.
The input operations are typed and extensible to handle user-defined types. This section is a very
brief introduction to the use of iostreams; Chapter 38 is a reasonably complete description of the
iostream library facilities.

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not
part of the ISO standard and therefore not described here.

4.3.1 Output

The I/O stream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type (§4.3.3). The operator << (“‘put to’’) is used as an output operator on objects of
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type ostream; cout is the standard output stream and cerr is the standard stream for reporting errors.
By default, values written to cout are converted to a sequence of characters. For example, to output
the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{
inti {10};
cout << i;
}
Output of different types can be combined in the obvious way:
void h(int i)
{
cout << "the value of i is ";
cout << i;
cout << '\n';

}
For h(10), the output will be:
the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << "\n';

}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as
a character rather than as a numerical value. For example:

void k()

{
intb="b'; // note: char implicitly converted to int
charc="'c’;

cout <<'a'<< b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.
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4.3.2 Input

The standard library offers istreams for input. Like ostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator >> (“‘get from’”) is used as an input operator; cin is the standard input stream. The
type of the right-hand operand of >> determines what input is accepted and what is the target of the
input operation. For example:

void f()
{

int i;

cin >> i // read an integer into i

double d;

cin >>d; // read a double-precision floating-point number into d
}

This reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12.34e5, into the double-precision floating-point variable d.

Often, we want to read a sequence of characters. A convenient way of doing that is to read into
a string. For example:

void hello()

{
cout << "Please enter your name\n";
string str;
cin >> str;

cout << "Hello, " << str << "\n";

}
If you type in Eric the response is:
Hello, Eric!

By default, a whitespace character (§7.3.2), such as a space, terminates the read, so if you enter Eric
Bloodaxe pretending to be the ill-fated king of York, the response is still:

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline() function.
For example:

void hello_line()

{
cout << "Please enter your name\n";
string str;
getline(cin,str);
cout << "Hello, " << str << "\n";
}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!
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The newline that terminated the line is discarded, so cin is ready for the next input line.

The standard strings have the nice property of expanding to hold what you put in them; you
don’t have to precalculate a maximum size. So, if you enter a couple of megabytes of semicolons,
the program will echo pages of semicolons back at you.

4.3.3 1/0 of User-Defined Types

In addition to the I/O of built-in types and standard strings, the iostream library allows programmers
to define I/O for their own types. For example, consider a simple type Entry that we might use to
represent entries in a telephone book:

struct Entry {
string name;
int number;
b
We can define a simple output operator to write an Entry using a { "name",number} format similar to
the one we use for initialization in code:

ostream& operator<<(ostream& os, const Entry& e)

{

return os << "{\"" << e.name << "\", " << e.number << "}";

}

A user-defined output operator takes its output stream (by reference) as its first argument and
returns it as its result. See §38.4.2 for details.

The corresponding input operator is more complicated because it has to check for correct for-
matting and deal with errors:

istream& operator>>(istream& is, Entry& e)
/l read { "name", number } pair. Note: formatted with { " ", and }

{
char c, c2;
if (is>>c && c=="{' && is>>c2 && c2==""") { // start witha { "
string name; // the default value of a string is the empty string: ""
while (is.get(c) && c!=""") /I anything before a " is part of the name
name+=c;
if (is>>c && c=="") {
int number = 0;
if (is>>number>>c && c=="}") {// read the number and a }
e = {name,number}; // assign to the entry
return is;
}
}
}
is.setf(ios_base::failbit); /! register the failure in the stream
return is;
}

An input operation returns a reference to its istream which can be used to test if the operation
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succeeded. For example, when used as a condition, is>>c means ‘“Did we succeed at reading from
is into ¢?”’

The is>>c skips whitespace by default, but is.get(c) does not, so that this Entry-input operator
ignores (skips) whitespace outside the name string, but not within it. For example:

{ "John Marwood Cleese" , 123456 }
{"Michael Edward Palin",987654}

We can read such a pair of values from input into an Entry like this:

for (Entry ee; cin>>ee; ) // read from cin into ee
cout << ee << '\n'; // write ee to cout

The output is:

{"John Marwood Cleese", 123456}
{"Michael Edward Palin", 987654}

See §38.4.1 for more technical details and techniques for writing input operators for user-defined
types. See §5.5 and Chapter 37 for a more systematic technique for recognizing patterns in streams
of characters (regular expression matching).

4.4 Containers

Most computing involves creating collections of values and then manipulating such collections.
Reading characters into a string and printing out the string is a simple example. A class with the
main purpose of holding objects is commonly called a container. Providing suitable containers for
a given task and supporting them with useful fundamental operations are important steps in the
construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and
telephone numbers. This is the kind of program for which different approaches appear ““simple and
obvious™ to people of different backgrounds. The Entry class from §4.3.3 can be used to hold a
simple phone book entry. Here, we deliberately ignore many real-world complexities, such as the
fact that many phone numbers do not have a simple representation as a 32-bit int.

4.4.1 vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given
type. The elements are stored contiguously in memory:

vector:
elem: ~ 0: 1: 2: 3: 4: 5:

e [ ]~ [ T [ T 177

,,,,,,,,,,

The Vector examples in §3.2.2 and §3.4 give an idea of the implementation of vector and §13.6 and
§31.4 provide an exhaustive discussion.
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We can initialize a vector with a set of values of its element type:

vector<Entry> phone_book = {

{"David Hume",123456},

{"Karl Popper",234567},

{"Bertrand Arthur William Russell",345678}
h

Elements can be accessed through subscripting:

void print_book(const vector<Entry>& book)

{
for (int i = 0; i!=book.size(); ++i)
cout << book]i] << "\n';

}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function size() gives the number of elements.
The elements of a vector constitute a range, so we can use a range-for loop (§2.2.5):

void print_book(const vector<Entry>& book)

{
for (const auto& x : book) // for "auto" see §2.2.2
cout << x << '\n';
}
When we define a vector, we give it an initial size (initial number of elements):
vector<int>v1 = {1, 2, 3, 4}; /l size is 4
vector<string> v2; // size is 0
vector<Shape:> v3(23); 1/ size is 23; initial element value: nullptr
vector<double> v4(32,9.9); 1/ size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, for example, (23), and by default the elements
are initialized to the element type’s default value (e.g., nullptr for pointers and 0 for numbers). If
you don’t want the default value, you can specify one as a second argument (e.g., 9.9 for the 32 ele-
ments of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(),
which adds a new element at the end of a vector, increasing its size by one. For example:

void input()
{
for (Entry e; cin>>e;)
phone_book.push_back(e);
}

This reads Entrys from the standard input into phone_book until either the end-of-input (e.g., the
end of a file) is reached or the input operation encounters a format error. The standard-library
vector is implemented so that growing a vector by repeated push_back()s is efficient.

A vector can be copied in assignments and initializations. For example:

vector<Entry> book2 = phone_book;
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Copying and moving of vectors are implemented by constructors and assignment operators as
described in §3.3. Assigning a vector involves copying its elements. Thus, after the initialization
of book2, book2 and phone_book hold separate copies of every Entry in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be expen-
sive. Where copying is undesirable, references or pointers (§7.2, §7.7) or move operations (§3.3.2,
§17.5.2) should be used.

4.4.1.1 Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a
vector<T>. Just about any type qualifies as an element type: built-in numeric types (such as char,
int, and double), user-defined types (such as string, Entry, list<int>, and Matrix<double,2>), and point-
ers (such as const char:, Shape+, and doublex). When you insert a new element, its value is copied
into the container. For example, when you put an integer with the value 7 into a container, the
resulting element really has the value 7. The element is not a reference or a pointer to some object
containing 7. This makes for nice compact containers with fast access. For people who care about
memory sizes and run-time performance this is critical.

4.4.1.2 Range Checking
The standard-library vector does not guarantee range checking (§31.2.2). For example:

void silly(vector<Entry>& book)

{

int i = book[ph.size()].number; /] book.size() is out of range
/.

}

That initialization is likely to place some random value in i rather than giving an error. This is
undesirable, and out-of-range errors are a common problem. Consequently, I often use a simple
range-checking adaptation of vector:

template<typename T>
class Vec : public std::vector<T> {
public:
using vector<T>::vector; / use the constructors from vector (under the name Vec); see §20.3.5.1

T& operator[](int i) /l range check
{ return vector<T>::at(i); }

const T& operator[](int i) const /l range check const objects; §3.2.1.1
{ return vector<T>::at(i); }

b
Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type
out_of_range if its argument is out of the vector’s range (§2.4.3.1, §31.2.2).
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For Vec, an out-of-range access will throw an exception that the user can catch. For example:

void checked(Vec<Entry>& book)

{
try {
book[book.size()] = {"Joe",999999}; 1/ will throw an exception
/...
}
catch (out_of _range) {
cout << "range error\n";
}
}

The exception will be thrown, and then caught (§2.4.3.1, Chapter 13). If the user doesn’t catch an
exception, the program will terminate in a well-defined manner rather than proceeding or failing in
an undefined manner. One way to minimize surprises from uncaught exceptions is to use a main()
with a try-block as its body. For example:

int main()
try {
/l your code
}
catch (out_of _range) {
cerr << "range error\n";

}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (§38.1).

Some implementations save you the bother of defining Vec (or equivalent) by providing a range-
checked version of vector (e.g., as a compiler option).

4.4.2 list
The standard library offers a doubly-linked list called list:

list:

—~
4 \ links links links links|—s

I |
,,,,,,,,

We use a list for sequences where we want to insert and delete elements without moving other ele-
ments. Insertion and deletion of phone book entries could be common, so a list could be appropri-
ate for representing a simple phone book. For example:

list<Entry> phone_book = {
{"David Hume",123456},
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{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
When we use a linked list, we tend not to access elements using subscripting the way we com-

monly do for vectors. Instead, we might search the list looking for an element with a given value.
To do this, we take advantage of the fact that a list is a sequence as described in §4.5:

int get_number(const string& s)

{
for (const auto& x : phone_book)
if (x.name==s)
return x.number;
return 0; // use O to represent "number not found"
}

The search for s starts at the beginning of the list and proceeds until s is found or the end of
phone_book is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete it or
insert a new entry before it. To do that we use an iferator: a list iterator identifies an element of a
list and can be used to iterate through a list (hence its name). Every standard-library container pro-
vides the functions begin() and end(), which return an iterator to the first and to one-past-the-last
element, respectively (§4.5, §33.1.1). Using iterators explicitly, we can — less elegantly — write the
get_number() function like this:

int get_number(const string& s)

{
for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
if (p—>name==s)
return p—>number;
return 0; // use O to represent "number not found"
}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the

compiler. Given an iterator p, #p is the element to which it refers, ++p advances p to refer to the

next element, and when p refers to a class with a member m, then p—>m is equivalent to (+p).m.
Adding elements to a list and removing elements from a list is easy:

void f(const Entry& ee, list<Entry>::iterator p, list<Entry>::iterator q)

{

phone_book.insert(p,ee); /] add ee before the element referred to by p
phone_book.erase(q); // remove the element referred to by q

}

For a more complete description of insert() and erase(), see §31.3.7.

These list examples could be written identically using vector and (surprisingly, unless you
understand machine architecture) perform better with a small vector than with a small list. When
all we want is a sequence of elements, we have a choice between using a vector and a list. Unless
you have a reason not to, use a vector. A vector performs better for traversal (e.g., find() and
count()) and for sorting and searching (e.g., sort() and binary_search()).
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4.4.3 map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a lin-
ear search is inefficient for all but the shortest lists. The standard library offers a search tree (a red-
black tree) called map:

********

map: | 3
gy /hnks/ ”””””
4| allinks

key:
value: links
links

In other contexts, a map is known as an associative array or a dictionary. It is implemented as a bal-
anced binary tree.

The standard-library map (§31.4.3) is a container of pairs of values optimized for lookup. We
can use the same initializer as for vector and list (§4.4.1, §4.4.2):

map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}
b
When indexed by a value of its first type (called the key), a map returns the corresponding value of
the second type (called the value or the mapped type). For example:

int get_number(const string& s)

{

return phone_book[s];

}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t
found, it is entered into the map with a default value for its value. The default value for an integer
type is 0; the value I just happened to choose represents an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and
insert() instead of [] (§31.4.3.1).

4.4.4 unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty
good. For example, for a map with 1,000,000 elements, we perform only about 20 comparisons
and indirections to find an element. However, in many cases, we can do better by using a hashed
lookup rather than comparison using an ordering function, such as <. The standard-library hashed
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containers are referred to as ““‘unordered” because they don’t require an ordering function:

unordered_map: | rep—

hash table: ‘H ‘ ‘

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}
b

As for a map, we can subscript an unordered_map:

int get_number(const string& s)

{

return phone_book[s];

}

The standard-library unordered_map provides a default hash function for strings. If necessary, you
can provide your own (§31.4.3.4).

4.4.5 Container Overview

The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary
vector<T> A variable-size vector (§31.4)
list<T> A doubly-linked list (§31.4.2)
forward_list<T> A singly-linked list (§31.4.2)
deque<T> A double-ended queue (§31.2)
set<T> A set (§31.4.3)
multiset<T> A set in which a value can occur many times (§31.4.3)
map<K,V> An associative array (§31.4.3)
multimap<K,V> A map in which a key can occur many times (§31.4.3)
unordered_map<K,V> A map using a hashed lookup (§31.4.3.2)
unordered_multimap<K,V> A multimap using a hashed lookup (§31.4.3.2)
unordered_set<T> A set using a hashed lookup (§31.4.3.2)
unordered_multiset<T> A multiset using a hashed lookup (§31.4.3.2)

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are implemented using hash tables.
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The standard containers are described in §31.4. The containers are defined in namespace std
and presented in headers <vector>, <list>, <map>, etc. (§4.1.2, §30.2). In addition, the standard
library provides container adaptors queue<T> (§31.5.2), stack<T> (§31.5.1), deque<T> (§31.4), and
priority_queue<T> (§31.5.3). The standard library also provides more specialized container-like
types, such as a fixed-size array array<T,N> (§34.2.1) and bitset<N> (§34.2.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. Basic operations apply to every kind of container for which they make sense and can be effi-
ciently implemented. For example:

* Dbegin() and end() give iterators to the first and one-beyond-the-last elements, respectively.

* push_back() can be used (efficiently) to add elements to the end of a vector, forward_list, list,

and other containers.

e size() returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container types that
can be used in a very similar manner to the standard ones. The range-checked vector, Vector
(§2.3.2, §2.4.3.1), is an example of that. The uniformity of container interfaces also allows us to
specify algorithms independently of individual container types. However, each has strengths and
weaknesses. For example, subscripting and traversing a vector is cheap and easy. On the other
hand, vector elements are moved when we insert or remove elements; list has exactly the opposite
properties. Please note that a vector is usually more efficient than a list for short sequences of small
elements (even for insert() and erase()). I recommend the standard-library vector as the default type
for sequences of elements: you need a reason to choose another.

4.5 Algorithms

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need opera-
tions for basic access such as adding and removing elements (as is provided for list and vector).
Furthermore, we rarely just store objects in a container. We sort them, print them, extract subsets,
remove elements, search for objects, etc. Consequently, the standard library provides the most
common algorithms for containers in addition to providing the most common container types. For
example, the following sorts a vector and places a copy of each unique vector element on a list:

bool operator<(const Entry& x, const Entry& y)  // less than

{

return x.name<y.name; /l order Entrys by their names

}

void f(vector<Entry>& vec, list<Entry>& Ist)

{
sort(vec.begin(),vec.end()); // use < for order
unique_copy(vec.begin(),vec.end(),Ist.begin());  // don’t copy adjacent equal elements

}

The standard algorithms are described in Chapter 32. They are expressed in terms of sequences of
elements. A sequence is represented by a pair of iterators specifying the first element and the one-
beyond-the-last element:
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iterators: begin() end()

elements:

In the example, sort() sorts the sequence defined by the pair of iterators vec.begin() and vec.end() —
which just happens to be all the elements of a vector. For writing (output), you need only to specify
the first element to be written. If more than one element is written, the elements following that ini-
tial element will be overwritten. Thus, to avoid errors, Ist must have at least as many elements as
there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

list<Entry> f(vector<Entry>& vec)

{
list<Entry> res;
sort(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inserter(res)); // append to res
return res;

}

A back_inserter() adds elements at the end of a container, extending the container to make room for
them (§33.2.2). Thus, the standard containers plus back_inserter()s eliminate the need to use error-
prone, explicit C-style memory management using realloc() (§31.5.1). The standard-library list has
a move constructor (§3.3.2, §17.5.2) that makes returning res by value efficient (even for lists of
thousands of elements).

If you find the pair-of-iterators style of code, such as sort(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sort(vec) (§4.5.6).

4.5.1 Use of Iterators

When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin() and end() are the best examples of this. In addition, many algorithms return iterators. For
example, the standard algorithm find looks for a value in a sequence and returns an iterator to the
element found:

bool has_c(const string& s, char c) // does s contain the character c¢?
{
auto p = find(s.begin(),s.end(),c);
if (p!=s.end())
return true;
else
return false;

}
Like many standard-library search algorithms, find returns end() to indicate “‘not found.” An equiv-
alent, shorter, definition of has_c() is:
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bool has_c(const string& s, char c) // does s contain the character c?

{

return find(s.begin(),s.end(),c)!=s.end();

}

A more interesting exercise would be to find the location of all occurrences of a character in a
string. We can return the set of occurrences as a vector of string iterators. Returning a vector is
efficient because of vector provides move semantics (§3.3.1). Assuming that we would like to
modify the locations found, we pass a non-const string:

vector<string::iterator> find_all(string& s, char c) /! find all occurrences of c in s
{
vector<string::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)
if (+p==c)
res.push_back(p);
return res;

}

We iterate through the string using a conventional loop, moving the iterator p forward one element
at a time using ++ and looking at the elements using the dereference operator . We could test
find_all() like this:

void test()
{
string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a"))
if (xpl='a’)
cerr << "a bug\n";

}
That call of find_all() could be graphically represented like this:

find_all(m,a’): | | |

m|Mla|r[y[ [n[afd] Jaf Jt]ifce]eft]e] [1]afm[b] |

Iterators and standard algorithms work equivalently on every standard container for which their use
makes sense. Consequently, we could generalize find_all():

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) /! find all occurrences of vin ¢
{

vector<typename C::iterator> res;

for (auto p = c.begin(); p!=c.end(); ++p)

if (xp==v)
res.push_back(p);
return res;
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The typename is needed to inform the compiler that C’s iterator is supposed to be a type and not a
value of some type, say, the integer 7. We can hide this implementation detail by introducing a type
alias (§3.4.5) for Iterator:

template<typename T>
using lterator<T> = typename T::iterator;

template<typename C, typename V>
vector<lterator<C>> find_all(C& c, V v) /! find all occurrences of vin ¢
{

vector<lIterator<C>> res;

for (auto p = c.begin(); p!=c.end(); ++p)

if (+p==v)
res.push_back(p);
return res;
}
We can now write:
void test()
{
string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a")) /l p is a string::iterator
if (xpl='a’)

cerr << "string bug\n";

listcdouble> Id {1.1, 2.2, 3.3, 1.1};
for (auto p : find_all(ld,1.1))
if (+xp!=1.1)
cerr << "list bug\n";

vector<string> vs { "red", "blue", "green", "green", "orange", "green" };
for (auto p : find_all(vs,"green"))
if (+p!="green")
cerr << "vector bug\n";

for (auto p : find_all(vs,"green"))
*p = "Vert";

}

Iterators are used to separate algorithms and containers. An algorithm operates on its data through
iterators and knows nothing about the container in which the elements are stored. Conversely, a
container knows nothing about the algorithms operating on its elements; all it does is to supply iter-
ators upon request (e.g., begin() and end()). This model of separation between data storage and
algorithm delivers very general and flexible software.

4.5.2 Iterator Types

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types, because an iterator needs to hold the information necessary for doing
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its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector’s iterator could be an ordinary pointer,
because a pointer is quite a reasonable way of referring to an element of a vector:

iterator: P
vector: ’P|i|e|t| ‘H|e|i|n‘

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

iterator: (start == p, position == 3)
[ -
vector: ’ P | i | e | t | ‘ H | e | i | n ‘

Using such an iterator would allow range checking.

A list iterator must be something more complicated than a simple pointer to an element because
an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

iterator: \
list: link link link link —» ...
elements: P i e t

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, = yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (§33.1.4). Furthermore, users rarely need to know the type of a specific iterator; each
container “knows” its iterator types and makes them available under the conventional names itera-
tor and const_iterator. For example, list<Entry>::iterator is the general iterator type for list<Entry>.
We rarely have to worry about the details of how that type is defined.

4.5.3 Stream Iterators

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values, and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of
objects written to it. For example:
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ostream_iterator<string> oo {cout}; 1/l write strings to cout

The effect of assigning to *oo is to write the assigned value to cout. For example:

int main()
{
00 = "Hello, "; /I meaning cout<<"Hello, "
++00;
x00 = "world\n";  // meaning cout<<"world!/\n"
}

This is yet another way of writing the canonical message to standard output. The ++oo is done to
mimic writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read-only
container. Again, we must specify the stream to be used and the type of values expected:

istream_iterator<string> ii {cin};

Input iterators are used in pairs representing a sequence, SO we must provide an istream_iterator to
indicate the end of input. This is the default istream_iterator:

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are provided as
arguments to algorithms. For example, we can write a simple program to read a file, sort the words
read, eliminate duplicates, and write the result to another file:

int main()

{
string from, to;
cin >> from >> to; /l get source and target file names
ifstream is {from}; /l input stream for file "from"
istream_iterator<string> ii {is}; /l input iterator for stream
istream_iterator<string> eos {}; / input sentinel
ofstream os{to}; /l output stream for file "to"

ostream_iterator<string> oo {o0s,"\n"}; // output iterator for stream

vector<string> b {ii,eos}; /I b is a vector initialized from input [ii:eos)
sort(b.begin(),b.end()); 1/ sort the buffer
unique_copy(b.begin(),b.end(),00); 1/l copy buffer to output, discard replicated values
return lis.eof() Il los; /] return error state (§2.2.1, §38.3)

}

An ifstream is an istream that can be attached to a file, and an ofstream is an ostream that can be
attached to a file. The ostream_iterator’s second argument is used to delimit output values.

Actually, this program is longer than it needs to be. We read the strings into a vector, then we
sort() them, and then we write them out, eliminating duplicates. A more elegant solution is not to
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store duplicates at all. This can be done by keeping the strings in a set, which does not keep dupli-
cates and keeps its elements in order (§31.4.3). That way, we could replace the two lines using a
vector with one using a set and replace unique_copy() with the simpler copy():

set<string> b {ii,eos}; /! collect strings from input
copy(b.begin(),b.end(),00); 1/l copy buffer to output

We used the names ii, eos, and oo only once, so we could further reduce the size of the program:

int main()

{
string from, to;
cin >> from >> to; // get source and target file names
ifstream is {from}; /l input stream for file "from"
ofstream os {to}; // output stream for file "to"

set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; // read input
copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); // copy to output

return lis.eof() Il los; / return error state (§2.2.1, §38.3)

}

It is a matter of taste and experience whether or not this last simplification improves readability.

4.5.4 Predicates

In the examples above, the algorithms have simply “built in” the action to be done for each ele-
ment of a sequence. However, we often want to make that action a parameter to the algorithm. For
example, the find algorithm (§32.4) provides a convenient way of looking for a specific value. A
more general variant looks for an element that fulfills a specified requirement, a predicate (§3.4.2).
For example, we might want to search a map for the first value larger than 42. A map allows us to
access its elements as a sequence of (key,value) pairs, so we can search a map<string,int>"s sequence
for a pair<const string,int> where the int is greater than 42:

void f(map<string,int>& m)

{
auto p = find_if(m.begin(),m.end(),Greater_than{42});

/...
}

Here, Greater_than is a function object (§3.4.3) holding the value (42) to be compared against:

struct Greater_than {
int val;
Greater_than(int v) : val{v} { }
bool operator()(const pair<string,int>& r) { return r.second>val; }

b
Alternatively, we could use a lambda expression (§3.4.3):

int cxx = count_if(m.begin(), m.end(), [I(const pair<string,int>& r) { return r.second>42; });
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4.5.5 Algorithm Overview

A general definition of an algorithm is “‘a finite set of rules which gives a sequence of operations
for solving a specific set of problems [and] has five important features: Finiteness ... Definiteness ...
Input ... Output ... Effectiveness” [Knuth,1968,§1.1]. In the context of the C++ standard library, an
algorithm is a function template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. These standard-library algorithms all take sequences
as inputs (§4.5). A half-open sequence from b to e is referred to as [b:e). Here are a few I have
found particularly useful:

Selected Standard Algorithms
p=find(b,e,x) p is the first p in [b:e) so that =p==x
p=find_if(b,e,f) p is the first p in [b:e) so that f(+p)==true
n=count(b,e,x) n is the number of elements +q in [b:e) so that xq==x
n=count_if(b,e,f) n is the number of elements #q in [b:e) so that f(xq,x)
replace(b,e,v,v2) Replace elements #q in [b:e) so that xq==v by v2
replace_if(b,e,f,v2) Replace elements +*q in [b:e) so that f(xq) by v2
p=copy(b,e,out) Copy [b:e) to [out:p)
p=copy_if(b,e,out,f) Copy elements *q from [b:e) so that f(xq) to [out:p)
p=unique_copy(b,e,out) Copy [b:e) to [out:p); don’t copy adjacent duplicates
sort(b,e) Sort elements of [b:e) using < as the sorting criterion
sort(b,e,f) Sort elements of [b:e) using f as the sorting criterion
(p1,p2)=equal_range(b,e,v)  [p1:p2) is the subsequence of the sorted sequence [b:e)

with the value v; basically a binary search for v

p=merge(b,e,b2,e2,out) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)

These algorithms, and many more (see Chapter 32), can be applied to elements of containers,
strings, and built-in arrays.

4.5.6 Container Algorithms

A sequence is defined by a pair of iterators [begin:end). This is general and flexible, but most often,
we apply an algorithm to a sequence that is the contents of a container. For example:

sort(v.begin(),v.end());
Why don’t we just say sort(v)? We can easily provide that shorthand:

namespace Estd {
using namespace std;

template<class C>
void sort(C& c)
{
sort(c.begin(),c.end());
}
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template<class C, class Pred>
void sort(C& c, Pred p)
{

}

/...

sort(c.begin(),c.end(),p);

Chapter 4

I put the container versions of sort() (and other algorithms) into their own namespace Estd

(“extended std’’) to avoid interfering with other programmers’ uses of namespace std.

4.6

Advice

Don’t reinvent the wheel; use libraries; §4.1.

When you have a choice, prefer the standard library over other libraries; §4.1.
Do not think that the standard library is ideal for everything; §4.1.

Remember to #include the headers for the facilities you use; §4.1.2.
Remember that standard-library facilities are defined in namespace std; §4.1.2.
Prefer strings over C-style strings (a char:; §2.2.5); §4.2, §4.3.2.

iostreams are type sensitive, type-safe, and extensible; §4.3.

Prefer vector<T>, map<K,T>, and unordered_map<K,T> over T[]; $§4.4.

Know your standard containers and their tradeoffs; §4.4.

Use vector as your default container; §4.4.1.

Prefer compact data structures; §4.4.1.1.

If in doubt, use a range-checked vector (such as Vec); §4.4.1.2.

Use push_back() or back_inserter() to add elements to a container; §4.4.1, §4.5.
Use push_back() on a vector rather than realloc() on an array; §4.5.

Catch common exceptions in main(); §4.4.1.2.

Know your standard algorithms and prefer them over handwritten loops; §4.5.5.

If iterator use gets tedious, define container algorithms; §4.5.6.
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5.1 Introduction

From an end-user’s perspective, the ideal standard library would provide components directly sup-
porting essentially every need. For a given application domain, a huge commercial library can
come close to that ideal. However, that is not what the C++ standard library is trying to do. A
manageable, universally available, library cannot be everything to everybody. Instead, the C++
standard library aims to provide components that are useful to most people in most application
areas. That is, it aims to serve the intersection of all needs rather than their union. In addition, sup-
port for a few widely important application areas, such as mathematical computation and text
manipulation, have crept in.
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5.2 Resource Management

One of the key tasks of any nontrivial program is to manage resources. A resource is something
that must be acquired and later (explicitly or implicitly) released. Examples are memory, locks,
sockets, thread handles, and file handles. For a long-running program, failing to release a resource
in a timely manner (‘“‘a leak’) can cause serious performance degradation and possibly even a mis-
erable crash. Even for short programs, a leak can become an embarrassment, say by a resource
shortage increasing the run time by orders of magnitude.

The standard library components are designed not to leak resources. To do this, they rely on the
basic language support for resource management using constructor/destructor pairs to ensure that a
resource doesn’t outlive an object responsible for it. The use of a constructor/destructor pair in
Vector to manage the lifetime of its elements is an example (§3.2.1.2) and all standard-library con-
tainers are implemented in similar ways. Importantly, this approach interacts correctly with error
handling using exceptions. For example, the technique is used for the standard-library lock classes:

mutex m; // used to protect access to shared data

/...

void f()

{
unique_lock<mutex> Ick {m}; // acquire the mutex m
/l ... manipulate shared data ...

}

A thread will not proceed until Ick’s constructor has acquired its mutex, m (§5.3.4). The corre-
sponding destructor releases the resource. So, in this example, unique_lock’s destructor releases the
mutex when the thread of control leaves f() (through a return, by ““falling off the end of the func-
tion,” or through an exception throw).

This is an application of the “Resource Acquisition Is Initialization” technique (RAII; §3.2.1.2,
§13.3). This technique is fundamental to the idiomatic handling of resources in C++. Containers
(such as vector and map), string, and iostream manage their resources (such as file handles and buf-
fers) similarly.

5.2.1 unique_ptr and shared_ptr

The examples so far take care of objects defined in a scope, releasing the resources they acquire at
the exit from the scope, but what about objects allocated on the free store? In <memory>, the stan-
dard library provides two ‘‘smart pointers’ to help manage objects on the free store:

[1]  unique_ptr to represent unique ownership (§34.3.1)

[2] shared_ptr to represent shared ownership (§34.3.2)
The most basic use of these ‘“smart pointers’ is to prevent memory leaks caused by careless pro-
gramming. For example:

void f(int i, int ) Il X* vs. unique_ptr<X>

{
X p = new X; // allocate a new X
unique_ptr<X> sp {new X};  // allocate a new X and give its pointer to unique_ptr
/...
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if (i<99) throw Z{}; // may throw an exception
if (j<77) return; /l may return "early"
p—>do_something(); /l may throw an exception
sp—>do_something(); /I may throw an exception
/...

delete p; // destroy *p

}

Here, we ““forgot” to delete p if i<99 or if j<77. On the other hand, unique_ptr ensures that its object
is properly destroyed whichever way we exit () (by throwing an exception, by executing return, or
by “falling off the end”). Ironically, we could have solved the problem simply by not using a
pointer and not using new:

void f(int i, int j) // use a local variable

{
X x;
/...

}

Unfortunately, overuse of new (and of pointers and references) seems to be an increasing problem.

However, when you really need the semantics of pointers, unique_ptr is a very lightweight
mechanism with no space or time overhead compared to correct use of a built-in pointer. Its further
uses include passing free-store allocated objects in and out of functions:

unique_ptr<X> make_X(int i)
/I make an X and immediately give it to a unique_ptr

{

/l ... check i, etc. ...
return unique_ptr<X>{new X{i}};

}

A unique_ptr is a handle to an individual object (or an array) in much the same way that a vector is
a handle to a sequence of objects. Both control the lifetime of other objects (using RAII) and both
rely on move semantics to make return simple and efficient.

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved.
The shared_ptrs for an object share ownership of an object and that object is destroyed when the
last of its shared_ptrs is destroyed. For example:

void f(shared_ptr<fstream>);
void g(shared_ptr<fstream>);

void user(const string& name, ios_base::openmode mode)
{
shared_ptr<fstream> fp {new fstream(name,mode)};
if (!+fp) throw No_file{}; // make sure the file was properly opened

f(fp);
o(fp);
/..
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Now, the file opened by fp’s constructor will be closed by the last function to (explicitly or implic-
itly) destroy a copy of fp. Note that f() or g() may spawn a task holding a copy of fp or in some
other way store a copy that outlives user(). Thus, shared_ptr provides a form of garbage collection
that respects the destructor-based resource management of the memory-managed objects. This is
neither cost free nor exorbitantly expensive, but does make the lifetime of the shared object hard to
predict. Use shared_ptr only if you actually need shared ownership.

Given unique_ptr and shared_ptr, we can implement a complete ‘“‘no naked new” policy
(§3.2.1.2) for many programs. However, these ‘“‘smart pointers” are still conceptually pointers and
therefore only my second choice for resource management — after containers and other types that
manage their resources at a higher conceptual level. In particular, shared_ptrs do not in themselves
provide any rules for which of their owners can read and/or write the shared object. Data races
(§41.2.4) and other forms of confusion are not addressed simply by eliminating the resource man-
agement issues.

Where do we use “‘smart pointers”™ (such as unique_ptr) rather than resource handles with oper-
ations designed specifically for the resource (such as vector or thread)? Unsurprisingly, the answer
is “when we need pointer semantics.”

*  When we share an object, we need pointers (or references) to refer to the shared object, so a

shared_ptr becomes the obvious choice (unless there is an obvious single owner).

*  When we refer to a polymorphic object, we need a pointer (or a reference) because we don’t
know the exact type of the object referred to or even its size), so a unique_ptr becomes the
obvious choice.

* A shared polymorphic object typically requires shared_ptrs.

We do not need to use a pointer to return a collection of objects from a function; a container that is
a resource handle will do that simply and efficiently (§3.3.2).

5.3 Concurrency

Concurrency — the execution of several tasks simultaneously — is widely used to improve through-
put (by using several processors for a single computation) or to improve responsiveness (by allow-
ing one part of a program to progress while another is waiting for a response). All modern pro-
gramming languages provide support for this. The support provided by the C++ standard library is
a portable and type-safe variant of what has been used in C++ for more than 20 years and is almost
universally supported by modern hardware. The standard-library support is primarily aimed at sup-
porting systems-level concurrency rather than directly providing sophisticated higher-level concur-
rency models; those can be supplied as libraries built using the standard-library facilities.

The standard library directly supports concurrent execution of multiple threads in a single
address space. To allow that, C++ provides a suitable memory model (§41.2) and a set of atomic
operations (§41.3). However, most users will see concurrency only in terms of the standard library
and libraries built on top of that. This section briefly gives examples of the main standard-library
concurrency support facilities: threads, mutexes, lock() operations, packaged_tasks, and futures.
These features are built directly upon what operating systems offer and do not incur performance
penalties compared with those.
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5.3.1 Tasks and threads

We call a computation that can potentially be executed concurrently with other computations a task.
A thread is the system-level representation of a task in a program. A task to be executed concur-
rently with other tasks is launched by constructing a std::thread (found in <thread>) with the task as
its argument. A task is a function or a function object:

void f(); / function

struct F { // function object
void operator()(); // F’s call operator (§3.4.3)

h

void user()

{
thread t1 {f}; /I f() executes in separate thread
thread 2 {F()}; /I F()() executes in separate thread
t1.join(); 1/ wait for t1
t2.join(); // wait for t2

}

The join()s ensure that we don’t exit user() until the threads have completed. To “‘join”” means to
“wait for the thread to terminate.”

Threads of a program share a single address space. In this, threads differ from processes, which
generally do not directly share data. Since threads share an address space, they can communicate
through shared objects (§5.3.4). Such communication is typically controlled by locks or other
mechanisms to prevent data races (uncontrolled concurrent access to a variable).

Programming concurrent tasks can be very tricky. Consider possible implementations of the
tasks f (a function) and F (a function object):

void f() { cout << "Hello "; }

struct F {
void operator()() { cout << "Parallel World"\n"; }
b
This is an example of a bad error: Here, f and F() each use the object cout without any form of syn-
chronization. The resulting output would be unpredictable and could vary between different execu-
tions of the program because the order of execution of the individual operations in the two tasks is
not defined. The program may produce “odd” output, such as

PaHerallllel o World!

When defining tasks of a concurrent program, our aim is to keep tasks completely separate except
where they communicate in simple and obvious ways. The simplest way of thinking of a concur-
rent task is as a function that happens to run concurrently with its caller. For that to work, we just
have to pass arguments, get a result back, and make sure that there is no use of shared data in
between (no data races).
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5.3.2 Passing Arguments

Typically, a task needs data to work upon. We can easily pass data (or pointers or references to the
data) as arguments. Consider:

void f(vector<double>& v);  // function do something with v
struct F { // function object: do something with v

vector<double>& v;
F(vector<double>& vv) :v{vv} { }

void operator()(); // application operator; §3.4.3
b
int main()
{
vector<double> some_vec {1,2,3,4,5,6,7,8,9};
vector<double> vec2 {10,11,12,13,14};
thread t1 {f,some_vec}; // f(some_vec) executes in a separate thread
thread t2 {F{vec2}}; /I F(vec2)() executes in a separate thread
t1.join();
t2.join();
}

Obviously, F{vec2} saves a reference to the argument vector in F. F can now use that array and
hopefully no other task accesses vec2 while F is executing. Passing vec2 by value would eliminate
that risk.

The initialization with {f,some_vec} uses a thread variadic template constructor that can accept
an arbitrary sequence of arguments (§28.6). The compiler checks that the first argument can be
invoked given the following arguments and builds the necessary function object to pass to the
thread. Thus, if F::operator()() and f() perform the same algorithm, the handling of the two tasks are
roughly equivalent: in both cases, a function object is constructed for the thread to execute.

5.3.3 Returning Results

In the example in §5.3.2, I pass the arguments by non-const reference. I only do that if I expect the
task to modify the value of the data referred to (§7.7). That’s a somewhat sneaky, but not uncom-
mon, way of returning a result. A less obscure technique is to pass the input data by const refer-
ence and to pass the location of a place to deposit the result as a separate argument:

void f(const vector<double>& v, double: res);/ take input from v; place result in *res

class F {

public:
F(const vector<double>& vv, double: p) :v{vv}, res{p} { }
void operator()(); /l place result in *res
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private:
const vector<double>& v; // source of input
doublex res; /! target for output

5

int main()

{

vector<double> some_vec;
vector<double> vec2;
/...

double resi;
double res2;

thread t1 {f,some_vec,&res1}; / f(some_vec,&res1) executes in a separate thread
thread t2 {F{vec2,&res2}}; 1/l F{vec2,&res2)() executes in a separate thread

t1.join();
t2.join();

cout <<resl <<''<<res2 <<'\n';

}

I don’t consider returning results through arguments particularly elegant, so I return to this topic in
§5.3.5.1.

5.3.4 Sharing Data

Sometimes tasks need to share data. In that case, the access has to be synchronized so that at most
one task at a time has access. Experienced programmers will recognize this as a simplification
(e.g., there is no problem with many tasks simultaneously reading immutable data), but consider
how to ensure that at most one task at a time has access to a given set of objects.

The fundamental element of the solution is a mutex, a “mutual exclusion object.” A thread
acquires a mutex using a lock() operation:

mutex m; // controlling mutex
int sh; // shared data

void ()
{

unique_lock<mutex> Ick {m}; // acquire mutex
sh+=7; /I manipulate shared data
} 1/l release mutex implicitly

The unique_lock’s constructor acquires the mutex (through a call m.lock()). If another thread has
already acquired the mutex, the thread waits (‘‘blocks’) until the other thread completes its access.
Once a thread has completed its access to the shared data, the unique_lock releases the mutex (with
a call m.unlock()). The mutual exclusion and locking facilities are found in <mutex>.
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The correspondence between the shared data and a mutex is conventional: the programmer simply
has to know which mutex is supposed to correspond to which data. Obviously, this is error-prone,
and equally obviously we try to make the correspondence clear through various language means.
For example:

class Record {

public:
mutex rm;
/...

b

It doesn’t take a genius to guess that for a Record called rec, rec.rm is a mutex that you are supposed
to acquire before accessing the other data of rec, though a comment or a better name might have
helped a reader.

It is not uncommon to need to simultaneously access several resources to perform some action.
This can lead to deadlock. For example, if thread1 acquires mutex1 and then tries to acquire mutex2
while thread2 acquires mutex2 and then tries to acquire mutex1, then neither task will ever proceed
further. The standard library offers help in the form of an operation for acquiring several locks
simultaneously:

void ()

{
/...

unique_lock<mutex> Ick1 {m1,defer_lock}; // defer_lock: don'’t yet try to acquire the mutex
unique_lock<mutex> Ick2 {m2,defer_lock};
unique_lock<mutex> Ick3 {m3,defer_lock};
/...
lock(lck1,lck2,Ick3); /I acquire all three locks
/l ... manipulate shared data ...
} /1 implicitly release all mutexes

This lock() will only proceed after acquiring all its mutex arguments and will never block (*““go to
sleep’”) while holding a mutex. The destructors for the individual unique_locks ensure that the
mutexes are released when a thread leaves the scope.

Communicating through shared data is pretty low level. In particular, the programmer has to
devise ways of knowing what work has and has not been done by various tasks. In that regard, use
of shared data is inferior to the notion of call and return. On the other hand, some people are con-
vinced that sharing must be more efficient than copying arguments and returns. That can indeed be
so when large amounts of data are involved, but locking and unlocking are relatively expensive
operations. On the other hand, modern machines are very good at copying data, especially compact
data, such as vector elements. So don’t choose shared data for communication because of “effi-
ciency’’ without thought and preferably not without measurement.

5.3.4.1 Waiting for Events

Sometimes, a thread needs to wait for some kind of external event, such as another thread complet-
ing a task or a certain amount of time having passed. The simplest “event’ is simply time passing.
Consider:
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using namespace std::chrono; /] see §35.2

auto t0 = high_resolution_clock::now();

this_thread::sleep_for(milliseconds{20});

auto t1 = high_resolution_clock::now();

cout << duration_cast<nanoseconds>(t1-t0).count() << " nanoseconds passed\n";

Note that I didn’t even have to launch a thread; by default, this_thread refers to the one and only
thread (§42.2.6).

I used duration_cast to adjust the clock’s units to the nanoseconds I wanted. See §5.4.1 and
§35.2 before trying anything more complicated than this with time. The time facilities are found in
<chrono>.

The basic support for communicating using external events is provided by condition_variables
found in <condition_variable> (§42.3.4). A condition_variable is a mechanism allowing one thread to
wait for another. In particular, it allows a thread to wait for some condition (often called an event)
to occur as the result of work done by other threads.

Consider the classical example of two threads communicating by passing messages through a
queue. For simplicity, I declare the queue and the mechanism for avoiding race conditions on that
queue global to the producer and consumer:

class Message { // object to be communicated

/...
b
queue<Message> mqueue; 1/l the queue of messages
condition_variable mcond; // the variable communicating events
mutex mmutex; /! the locking mechanism

The types queue, condition_variable, and mutex are provided by the standard library.
The consumer() reads and processes Messages:

void consumer()

{
while(true) {
unique_lock<mutex> Ick{mmutex}; /I acquire mmutex
while (mcond.wait(Ick)) /* do nothing */; I/ release Ick and wait;
/] re-acquire Ick upon wakeup
auto m = mqueue.front(); /] get the message
mgqueue.pop();
Ick.unlock(); // release Ick
/l ... process m ...
}
}

Here, I explicitly protect the operations on the queue and on the condition_variable with a
unique_lock on the mutex. Waiting on condition_variable releases its lock argument until the wait is
over (so that the queue is non-empty) and then reacquires it.

The corresponding producer looks like this:
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void producer()

{
while(true) {
Message m;
/ ... fill the message ...
unique_lock<mutex> Ick {mmutex}; // protect operations
mqueue.push(m);
mcond.notify_one(); 1/ notify
} // release lock (at end of scope)
}

Using condition_variables supports many forms of elegant and efficient sharing, but can be rather
tricky (§42.3.4).

5.3.5 Communicating Tasks

The standard library provides a few facilities to allow programmers to operate at the conceptual
level of tasks (work to potentially be done concurrently) rather than directly at the lower level of
threads and locks:
[1]  future and promise for returning a value from a task spawned on a separate thread
[2] packaged_task to help launch tasks and connect up the mechanisms for returning a result
[3] async() for launching of a task in a manner very similar to calling a function.
These facilities are found in <future>.

5.3.5.1 future and promise

The important point about future and promise is that they enable a transfer of a value between two
tasks without explicit use of a lock; ““the system” implements the transfer efficiently. The basic
idea is simple: When a task wants to pass a value to another, it puts the value into a promise. Some-
how, the implementation makes that value appear in the corresponding future, from which it can be
read (typically by the launcher of the task). We can represent this graphically:

taskl: task2:

future promise

set_value()
get()

set_exception()

If we have a future<X> called fx, we can get() a value of type X from it:
X v =fx.get(); // if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be computed,
get() might throw an exception (from the system or transmitted from the task from which we were
trying to get() the value).
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The main purpose of a promise is to provide simple “put” operations (called set_value() and
set_exception()) to match future’s get(). The names “future” and “promise” are historical; please
don’t blame me. They are yet another fertile source of puns.

If you have a promise and need to send a result of type X to a future, you can do one of two
things: pass a value or pass an exception. For example:

void f(promise<X>& px) // a task: place the result in px

{
/...
try {
X res;
/l ... compute a value for res ...
px.set_value(res);
}
catch (...) { /l oops: couldn’t compute res
/l pass the exception to the future’s thread:
px.set_exception(current_exception());
}
}

The current_exception() refers to the caught exception (§30.4.1.2).
To deal with an exception transmitted through a future, the caller of get() must be prepared to
catch it somewhere. For example:

void g(future<X>& fx) /l a task: get the result from fx
{
/...
try {
X v =fx.get(); // if necessary, wait for the value to get computed
/l...usev...
}
catch (...) { /l oops: someone couldn’t compute v

// ... handle error ...

}

5.3.5.2 packaged_task

How do we get a future into the task that needs a result and the corresponding promise into the
thread that should produce that result? The packaged_task type is provided to simplify setting up
tasks connected with futures and promises to be run on threads. A packaged_task provides wrapper
code to put the return value or exception from the task into a promise (like the code shown in
§5.3.5.1). If you ask it by calling get_future, a packaged_task will give you the future corresponding
to its promise. For example, we can set up two tasks to each add half of the elements of a
vector<double> using the standard-library accumulate() (§3.4.2, §40.6):
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double accum(double: beg, double = end, double init)
/ compute the sum of [beg:end) starting with the initial value init

{
return accumulate(beg,end,init);

}

double comp2(vector<double>& v)

{
using Task_type = double(double:,double:,double); / type of task
packaged_task<Task_type> pt0 {accum}; /l package the task (i.e., accum)
packaged_task<Task_type> pt1 {accum};
future<double> f0 {pt0.get_future()}; // get hold of pt0’s future
future<double> f1 {pt1.get_future()}; // get hold of pt1’s future
double: first = &v[0];
thread t1 {move(pt0),first,first+v.size()/2,0}; // start a thread for pt0
thread t2 {move(pt1),first+v.size()/2,first+v.size(),0}; // start a thread for pt1
/...
return f0.get()+f1.get(); /l get the results

}

The packaged_task template takes the type of the task as its template argument (here Task_type, an
alias for double(double+,double+,double)) and the task as its constructor argument (here, accum).
The move() operations are needed because a packaged_task cannot be copied.

Please note the absence of explicit mention of locks in this code: we are able to concentrate on
tasks to be done, rather than on the mechanisms used to manage their communication. The two
tasks will be run on separate threads and thus potentially in parallel.

5.3.5.3 async()

The line of thinking I have pursued in this chapter is the one I believe to be the simplest yet still
among the most powerful: Treat a task as a function that may happen to run concurrently with other
tasks. It is far from the only model supported by the C++ standard library, but it serves well for a
wide range of needs. More subtle and tricky models, e.g., styles of programming relying on shared
memory, can be used as needed.

To launch tasks to potentially run asynchronously, we can use async():

double comp4(vector<double>& v)
/I spawn many tasks if v is large enough

{
if (v.size()<10000) return accum(v.begin(),v.end(),0.0);

auto v0 = &v[0];
auto sz = v.size();
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auto f0 = async(accum,v0,v0+sz/4,0.0); /! first quarter
auto f1 = async(accum,v0+sz/4,v0+s2/2,0.0); /l second quarter
auto f2 = async(accum,v0+sz/2,v0+sz+3/4,0.0); // third quarter
auto 3 = async(accum,v0+sz+3/4,v0+s2,0.0); 1/ fourth quarter

return f0.get()+f1.get()+f2.get()+f3.get(); // collect and combine the results
}

Basically, async() separates the ““call part” of a function call from the ““get the result part,” and sep-
arates both from the actual execution of the task. Using async(), you don’t have to think about
threads and locks. Instead, you think just in terms of tasks that potentially compute their results
asynchronously. There is an obvious limitation: Don’t even think of using async() for tasks that
share resources needing locking — with async() you don’t even know how many threads will be used
because that’s up to async() to decide based on what it knows about the system resources available
at the time of a call. For example, async() may check whether any idle cores (processors) are avail-
able before deciding how many threads to use.

Please note that async() is not just a mechanism specialized for parallel computation for
increased performance. For example, it can also be used to spawn a task for getting information
from a user, leaving the ‘““main program” active with something else (§42.4.6).

5.4 Small Utility Components

Not all standard-library components come as part of obviously labeled facilities, such as ‘“‘contain-
ers” or “I/0.” This section gives a few examples of small, widely useful components:
* clock and duration for measuring time.
* Type functions, such as iterator_traits and is_arithmetic, for gaining information about types.
e pair and tuple for representing small potentially heterogeneous sets of values.
The point here is that a function or a type need not be complicated or closely tied to a mass of other
functions and types to be useful. Such library components mostly act as building blocks for more
powerful library facilities, including other components of the standard library.

5.4.1 Time

The standard library provides facilities for dealing with time. For example, here is the basic way of
timing something:

using namespace std::chrono; /] see §35.2

auto t0 = high_resolution_clock::now();

do_work();

auto t1 = high_resolution_clock::now();

cout << duration_cast<milliseconds>(t1-t0).count() << "msec\n";

The clock returns a time_point (a point in time). Subtracting two time_points gives a duration (a
period of time). Various clocks give their results in various units of time (the clock I used measures
nanoseconds), so it is usually a good idea to convert a duration into a known unit. That’s what dura-
tion_cast does.
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The standard-library facilities for dealing with time are found in the subnamespace std::chrono in
<chrono> (§35.2).

Don’t make statements about “efficiency” of code without first doing time measurements.
Guesses about performance are most unreliable.

5.4.2 Type Functions

A type function is a function that is evaluated at compile-time given a type as its argument or
returning a type. The standard library provides a variety of type functions to help library imple-
menters and programmers in general to write code that take advantage of aspects of the language,
the standard library, and code in general.

For numerical types, numeric_limits from <limits> presents a variety of useful information
(§5.6.5). For example:

constexpr float min = numeric_limits<float>::min(); // smallest positive float (§40.2)
Similarly, object sizes can be found by the built-in sizeof operator (§2.2.2). For example:
constexpr int szi = sizeof(int); // the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that allow tighter
type checking and better performance than would otherwise have been possible. Use of such fea-
tures is often called metaprogramming or (when templates are involved) template metaprogram-
ming (Chapter 28). Here, I just present two facilities provided by the standard library: iterator_traits
(§5.4.2.1) and type predicates (§5.4.2.2).

5.4.2.1 iterator_traits

The standard-library sort() takes a pair of iterators supposed to define a sequence (§4.5). Further-
more, those iterators must offer random access to that sequence, that is, they must be random-
access iterators. Some containers, such as forward_list, do not offer that. In particular, a for-
ward_list is a singly-linked list so subscripting would be expensive and there is no reasonable way
to refer back to a previous element. However, like most containers, forward_list offers forward iter-
ators that can be used to traverse the sequence by algorithms and for-statements (§33.1.1).

The standard library provides a mechanism, iterator_traits that allows us to check which kind of
iterator is supported. Given that, we can improve the range sort() from §4.5.6 to accept either a
vector or a forward_list. For example:

void test(vector<string>& v, forward_list<int>& Ist)

{

sort(v); // sort the vector
sort(Ist); // sort the singly-linked list
}

The techniques needed to make that work are generally useful.

First, I write two helper functions that take an extra argument indicating whether they are to be
used for random-access iterators or forward iterators. The version taking random-access iterator
arguments is trivial:
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template<typename Ran> 1/l for random-access iterators
void sort_helper(Ran beg, Ran end, random_access_iterator_tag) /I we can subscript into [beg:end)
{

sort(beg,end); / just sort it
}

The version for forward iterators is almost as simple; just copy the list into a vector, sort, and copy
back again:

template<typename For> // for forward iterators
void sort_helper(For beg, For end, forward_iterator_tag) // we can traverse [beg:end)

{

vector<decltype(:beg)> v {beg,end}; // initialize a vector from [beg:end)
sort(v.begin(),v.end());
copy(v.begin(),v.end(),beg); /] copy the elements back

}

The decltype() is a built-in type function that returns the declared type of its argument (§6.3.6.3).
Thus, v is a vector<X> where X is the element type of the input sequence.
The real “‘type magic” is in the selection of helper functions:

template<typname C>
void sort(C& c)

{

using lter = lterator_type<C>;
sort_helper(c.begin(),c.end(),lterator_category<lter>{});

}

Here, I use two type functions: Iterator_type<C> returns the iterator type of C (that is, C::iterator) and
then lterator_category<lter>{} constructs a ““‘tag” value indicating the kind of iterator provided:

* std::random_access_iterator_tag if C’s iterator supports random access.

* std::forward_iterator_tag if C’s iterator supports forward iteration.
Given that, we can select between the two sorting algorithms at compile time. This technique,
called tag dispatch is one of several used in the standard library and elsewhere to improve flexibil-
ity and performance.

The standard-library support for techniques for using iterators, such as tag dispatch, comes in
the form of a simple class template iterator_traits from <iterator> (§33.1.3). This allows simple defi-
nitions of the type functions used in sort():

template<typename C>
using lterator_type = typename C::iterator; // C’s iterator type

template<typename lter>
using lterator_category = typename std::iterator_traits<lter>::iterator_category; // lter’s category

If you don’t want to know what kind of “‘compile-time type magic” is used to provide the standard-
library features, you are free to ignore facilities such as iterator_traits. But then you can’t use the
techniques they support to improve your own code.
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5.4.2.2 Type Predicates

A standard-library type predicate is a simple type function that answers a fundamental question
about types. For example:

bool b1 = Is_arithmetic<int>(); /l yes, int is an arithmetic type
bool b2 = Is_arithmetic<string>(); // no, std::string is not an arithmetic type

These predicates are found in <type_traits> and described in §35.4.1. Other examples are is_class,
is_pod, is_literal_type, has_virtual_destructor, and is_base_of. They are most useful when we write
templates. For example:

template<typename Scalar>
class complex {
Scalar re, im;

public:
static_assert(ls_arithmetic<Scalar>(), "Sorry, | only support complex of arithmetic types");
/...

b

To improve readability compared to using the standard library directly, I defined a type function:

template<typename T>
constexpr bool Is_arithmetic()

{

return std::is_arithmetic<T>::value ;

}

Older programs use ::value directly instead of (), but I consider that quite ugly and it exposes imple-
mentation details.

5.4.3 pair and tuple

Often, we need some data that is just data; that is, a collection of values, rather than an object of a
class with a well-defined semantics and an invariant for its value (§2.4.3.2, §13.4). In such cases,
we could define a simple struct with an appropriate set of appropriately named members. Alterna-
tively, we could let the standard library write the definition for us. For example, the standard-
library algorithm equal_range (§32.6.1) returns a pair of iterators specifying a sub-sequence meeting
a predicate:

template<typename Forward_iterator, typename T, typename Compare>
pair<Forward_iterator,Forward_iterator>
equal_range(Forward_iterator first, Forward_iterator last, const T& val, Compare cmp);

Given a sorted sequence [first:last), equal_range() will return the pair representing the subsequence
that matches the predicate emp. We can use that to search in a sorted sequence of Records:

auto rec_eq = [J(const Record& r1, const Record& r2) { return r1.name<r2.name;};// compare names

void f(const vector<Record>& v) // assume that v is sorted on its "name" field

{

auto er = equal_range(v.begin(),v.end(),Record{"Reg"},rec_eq);
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for (auto p = er.first; p!=er.second; ++p) / print all equal records
cout << #p; /l assume that << is defined for Record

}

The first member of a pair is called first and the second member is called second. This naming is
not particularly creative and may look a bit odd at first, but such consistent naming is a boon when
we want to write generic code.

The standard-library pair (from <utility>) is quite frequently used in the standard library and
elsewhere. A pair provides operators, such as =, ==, and <, if its elements do. The make_pair() func-
tion makes it easy to create a pair without explicitly mentioning its type (§34.2.4.1). For example:

void f(vector<string>& v)

{
auto pp = make_pair(v.begin(),2); // pp is a pair<vector<string>::iterator,int>
/...

}

If you need more than two elements (or less), you can use tuple (from <utility>; §34.2.4.2). A tuple
is a heterogeneous sequence of elements; for example:

tuple<string,int,double> t2("Sild",123, 3.14); // the type is explicitly specified

auto t = make_tuple(string("Herring"),10, 1.23);  // the type is deduced
// tis a tuple<string,int,double>

string s = get<0>(t); / get first element of tuple
int x = get<i>(t);
double d = get<2>(t);

The elements of a tuple are numbered (starting with zero), rather than named the way elements of
pairs are (first and second). To get compile-time selection of elements, I must unfortunately use the
ugly get<1>(t), rather than get(t,1) or t[1] (§28.5.2).

Like pairs, tuples can be assigned and compared if their elements can be.

A pair is common in interfaces because often we want to return more than one value, such as a
result and an indicator of the quality of that result. It is less common to need three or more parts to
a result, so tuples are more often found in the implementations of generic algorithms.

5.5 Regular Expressions

Regular expressions are a powerful tool for text processing. They provide a way to simply and
tersely describe patterns in text (e.g., a U.S. ZIP code such as TX 77845, or an ISO-style date, such
as 2009-06-07) and to efficiently find such patterns in text. In <regex>, the standard library provides
support for regular expressions in the form of the std::regex class and its supporting functions. To
give a taste of the style of the regex library, let us define and print a pattern:

regex pat (R"(\Ww{2\s:\d{5}(-\d{4})?)"); // ZIP code pattern: XXddddd-dddd and variants
cout << "pattern: " << pat << '\n';
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People who have used regular expressions in just about any language will find \Ww{2)\s\d{5}(-\d{4})?
familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space \s+*
followed by five digits \d{5} and optionally followed by a dash and four digits -\d{4}. If you are not
familiar with regular expressions, this may be a good time to learn about them ([Stroustrup,2009],
[Maddock,2009], [Fried],1997]). Regular expressions are summarized in §37.1.1.

To express the pattern, I use a raw string literal (§7.3.2.1) starting with R"( and terminated by )".
This allows backslashes and quotes to be used directly in the string.

The simplest way of using a pattern is to search for it in a stream:

int lineno = 0;

for (string line; getline(cin,line);) { // read into line buffer
++lineno;
smatch matches; / matched strings go here
if (regex_search(line,matches,pat)) 1/l search for pat in line

cout << lineno << ": " << matches[0] << \n';

}

The regex_search(line,matches,pat) searches the line for anything that matches the regular expression
stored in pat and if it finds any matches, it stores them in matches. If no match was found,
regex_search(line,matches,pat) returns false. The matches variable is of type smatch. The ‘‘s”
stands for “sub” and an smatch is a vector of sub-matches. The first element, here matches[0], is
the complete match.

For a more complete description see Chapter 37.

5.6 Math

C++ wasn’t designed primarily with numerical computation in mind. However, C++ is heavily
used for numerical computation and the standard library reflects that.

5.6.1 Mathematical Functions and Algorithms

3

In <cmath>, we find the “‘usual mathematical functions,” such as sqrt(), log(), and sin() for argu-
ments of type float, double, and long double (§40.3). Complex number versions of these functions
are found in <complex> (§40.4).

In <numeric>, we find a small set of generalized numerical algorithms, such as accumulate(). For
example:

void f()

{
list<double> Ist {1, 2, 3, 4, 5, 9999.99999};
auto s = accumulate(lst.begin(),Ist.end(),0.0); // calculate the sum
cout << s << "\n'; /l print 10014.9999

}

These algorithms work for every standard-library sequence and can have operations supplied as
arguments (§40.6).
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5.6.2 Complex Numbers

The standard library supports a family of complex number types along the lines of the complex
class described in §2.3. To support complex numbers where the scalars are single-precision float-
ing-point numbers (floats), double-precision floating-point numbers (doubles), etc., the standard
library complex is a template:

template<typename Scalar>
class complex {

public:
complex(const Scalar& re ={}, const Scalar& im ={});
/...

b

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

void f(complex<float> fl, complex<double> db)

{
complex<long double> Id {fl+sqrt(db)};
db += fl+3;
fl = pow(1/f1,2);
/...
}

The sqrt() and pow() (exponentiation) functions are among the usual mathematical functions defined
in <complex>. For more details, see §40.4.

5.6.3 Random Numbers

Random numbers are useful in many contexts, such as testing, games, simulation, and security.
The diversity of application areas is reflected in the wide selection of random number generators
provided by the standard library in <random>. A random number generator consists of two parts:

[1] an engine that produces a sequence of random or pseudo-random values.

[2] adistribution that maps those values into a mathematical distribution in a range.
Examples of distributions are uniform_int_distribution (where all integers produced are equally
likely), normal_distribution (“‘the bell curve’), and exponential_distribution (exponential growth);
each for some specified range. For example:

using my_engine = default_random_engine; 1/ type of engine
using my_distribution = uniform_int_distribution<>;  // type of distribution

my_engine re {}; // the default engine

my_distribution one_to_six {1,6}; /! distribution that maps to the ints 1..6
auto die = bind(one_to_six,re); /Il make a generator

int x = die(); // roll the die: x becomes a value in [1:6]

The standard-library function bind() makes a function object that will invoke its first argument
(here, one_to_six) given its second argument (here, re) as its argument (§33.5.1). Thus a call die() is
equivalent to a call one_to_six(re).
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Thanks to its uncompromising attention to generality and performance one expert has deemed the
standard-library random number component *“‘what every random number library wants to be when
it grows up.” However, it can hardly be deemed ‘“‘novice friendly.” The using statements makes
what is being done a bit more obvious. Instead, I could just have written:

auto die = bind(uniform_int_distribution<>{1,6}, default_random_engine{});

Which version is the more readable depends entirely on the context and the reader.

For novices (of any background) the fully general interface to the random number library can be
a serious obstacle. A simple uniform random number generator is often sufficient to get started.
For example:

Rand_int rnd {1,10}; /l make a random number generator for [1:10]
int x = rnd(); /I x is a number in [1:10]

So, how could we get that? We have to get something like die() inside a class Rand_int:

class Rand_int {

public:

Rand_int(int low, int high) :dist{low,high} { }

int operator()() { return dist(re); } // draw an int
private:

default_random_engine re;
uniform_int_distribution<> dist;
b
That definition is still “expert level,” but the use of Rand_int() is manageable in the first week of a
C++ course for novices. For example:

int main()
{
Rand_int rnd {0,4}; /l make a uniform random number generator
vector<int> histogram(5); /I make a vector of size 5
for (int i=0; i!=200; ++i)
++histogram[rnd()]; /! fill histogram with the frequencies of numbers [0:4]

for (int i = 0; i'=mn.size(); ++i) { // write out a bar graph
cout <<i<<'\t';
for (int j=0; j!=mn[i]; ++j) cout << "';
cout << endl;

}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical variation):
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There is no standard graphics library for C++, so I use “ASCII graphics.” Obviously, there are lots
of open source and commercial graphics and GUI libraries for C++, but in this book I'll restrict
myself to ISO standard facilities.

For more information about random numbers, see §40.7.

5.6.4 Vector Arithmetic

The vector described in §4.4.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does not
support mathematical vector operations. Adding such operations to vector would be easy, but its
generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides (in <valarray>) a vector-like template,
called valarray, that is less general and more amenable to optimization for numerical computation:

template<typename T>
class valarray {
/...

b
The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:

void f(valarray<double>& a1, valarray<double>& a2)

{
valarray<double> a = a1+3.14+a2/a1; / numeric array operators *, +, /, and =
a2 += a1x3.14;
a = abs(a);
double d = a2[7];
/...
}

For more details, see §40.5. In particular, valarray offers stride access to help implement multidi-
mensional computations.

5.6.5 Numeric Limits

In «limits>, the standard library provides classes that describe the properties of built-in types — such
as the maximum exponent of a float or the number of bytes in an int; see §40.2. For example, we
can assert that a char is signed:

static_assert(numeric_limits<char>::is_signed,"unsigned characters!");
static_assert(100000<numeric_limits<int>::max(),"small ints!");

Note that the second assert (only) works because numeric_limits<int>::max() is a constexpr function
(§2.2.3, §10.4).
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5.7 Advice

] Use resource handles to manage resources (RAII); §5.2.
] Use unique_ptr to refer to objects of polymorphic type; §5.2.1.
] Use shared_ptr to refer to shared objects; §5.2.1.
[4] Use type-safe mechanisms for concurrency; §5.3.
]  Minimize the use of shared data; §5.3.4.
] Don’t choose shared data for communication because of “efficiency” without thought and
preferably not without measurement; §5.3.4.

[7]1 Think in terms of concurrent tasks, rather than threads; §5.3.5.

[8] A library doesn’t have to be large or complicated to be useful; §5.4.
[9] Time your programs before making claims about efficiency; §5.4.1.
[10] You can write code to explicitly depend on properties of types; §5.4.2.

]
] Use regular expressions for simple pattern matching; §5.5.

[12] Don’t try to do serious numeric computation using only the language; use libraries; §5.6.
] Properties of numeric types are accessible through numeric_limits; §5.6.5.



Part 11

Basic Facilities

This part describes C++’s built-in types and the basic facilities for constructing pro-
grams out of them. The C subset of C++ is presented together with C++’s additional
support for traditional styles of programming. It also discusses the basic facilities for
composing a C++ program out of logical and physical parts.
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... I have long entertained a suspicion, with regard to the decisions of philosophers
upon all subjects, and found in myself a greater inclination to dispute, than assent to
their conclusions. There is one mistake, to which they seem liable, almost without
exception; they confine too much their principles, and make no account of that vast
variety, which nature has so much affected in all her operations. When a philosopher
has once laid hold of a favourite principle, which perhaps accounts for many natural
effects, he extends the same principle over the whole creation, and reduces to it every
phenomenon, though by the most violent and absurd reasoning. ...”

— David Hume,
Essays, Moral, Political, and Literary. PART 1. (1752)
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Types and Declarations

Perfection is achieved
only on the point of collapse.
— C. N. Parkinson

¢ The ISO C++ Standard
Implementations; The Basic Source Character Set

e Types
Fundamental Types; Booleans; Character Types; Integer Types; Floating-Point Types; Pre-
fixes and Suffixes; void; Sizes; Alignment

¢ Declarations
The Structure of Declarations; Declaring Multiple Names; Names; Scope; Initialization;
Deducing a Type: auto and decltype()

e Objects and Values
Lvalues and Rvalues; Lifetimes of Objects

e Type Aliases

e Advice

6.1 The ISO C++ Standard

The C++ language and standard library are defined by their ISO standard: ISO/IEC 14882:2011. In
this book, references to the standard are of the form §is0.23.3.6.1. In cases where the text of this
book is considered imprecise, incomplete, or possibly wrong, consult the standard. But don’t
expect the standard to be a tutorial or to be easily accessible by non-experts.

Strictly adhering to the C++ language and library standard doesn’t by itself guarantee good
code or even portable code. The standard doesn’t say whether a piece of code is good or bad; it
simply says what a programmer can and cannot rely on from an implementation. It is easy to write
perfectly awful standard-conforming programs, and most real-world programs rely on features that
the standard does not guarantee to be portable. They do so to access system interfaces and
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hardware features that cannot be expressed directly in C++ or require reliance on specific imple-
mentation details.

Many important things are deemed implementation-defined by the standard. This means that
each implementation must provide a specific, well-defined behavior for a construct and that behav-
ior must be documented. For example:

unsigned char c1 = 64; /I well defined: a char has at least 8 bits and can always hold 64
unsigned char c2 = 1256; /I implementation-defined: truncation if a char has only 8 bits

The initialization of ¢1 is well defined because a char must be at least 8 bits. However, the behavior
of the initialization of ¢2 is implementation-defined because the number of bits in a char is imple-
mentation-defined. If the char has only 8 bits, the value 1256 will be truncated to 232 (§10.5.2.1).
Most implementation-defined features relate to differences in the hardware used to run a program.

Other behaviors are unspecified; that is, a range of possible behaviors are acceptable, but the
implementer is not obliged to specify which actually occur. Usually, the reason for deeming some-
thing unspecified is that the exact behavior is unpredictable for fundamental reasons. For example,
the exact value returned by new is unspecified. So is the value of a variable assigned to from two
threads unless some synchronization mechanism has been employed to prevent a data race (§41.2).

When writing real-world programs, it is usually necessary to rely on implementation-defined
behavior. Such behavior is the price we pay for the ability to operate effectively on a large range of
systems. For example, C++ would have been much simpler if all characters had been 8 bits and all
pointers 32 bits. However, 16-bit and 32-bit character sets are not uncommon, and machines with
16-bit and 64-bit pointers are in wide use.

To maximize portability, it is wise to be explicit about what implementation-defined features we
rely on and to isolate the more subtle examples in clearly marked sections of a program. A typical
example of this practice is to present all dependencies on hardware sizes in the form of constants
and type definitions in some header file. To support such techniques, the standard library provides
numeric_limits (§40.2). Many assumptions about implementation-defined features can be checked
by stating them as static assertions (§2.4.3.3). For example:

static_assert(4<=sizeof(int),"sizeof(int) too small");

Undefined behavior is nastier. A construct is deemed undefined by the standard if no reasonable
behavior is required by an implementation. Typically, some obvious implementation technique will
cause a program using an undefined feature to behave very badly. For example:

const int size = 4+1024;
char page[size];

void f()
{

page[size+size] = 7;// undefined

}

Plausible outcomes of this code fragment include overwriting unrelated data and triggering a hard-
ware error/exception. An implementation is not required to choose among plausible outcomes.
Where powerful optimizers are used, the actual effects of undefined behavior can become quite
unpredictable. If a set of plausible and easily implementable alternatives exist, a feature is deemed
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unspecified or implementation-defined rather than undefined.
It is worth spending considerable time and effort to ensure that a program does not use some-
thing deemed unspecified or undefined by the standard. In many cases, tools exist to help do this.

6.1.1 Implementations

A C++ implementation can be either hosted or freestanding (§is0.17.6.1.3). A hosted implementa-
tion includes all the standard-library facilities as described in the standard (§30.2) and in this book.
A freestanding implementation may provide fewer standard-library facilities, as long as the follow-
ing are provided:

Freestanding Implementation Headers
Types <cstddef> §10.3.1
Implementation properties <cfloat> <limits> <climits> §40.2
Integer types <cstdint> §43.7
Start and termination <cstdlib> §43.7
Dynamic memory management  <new> §11.2.3
Type identification <typeinfo> §22.5
Exception handling <exception> §30.4.1.1
Initializer lists <initializer_list> §30.3.1
Other run-time support <cstdalign> <cstdarg> <cstdbool>  §12.2.4, §44.3.4
Type traits <type_traits> §35.4.1
Atomics <atomic> §41.3

Freestanding implementations are meant for code running with only the most minimal operating
system support. Many implementations also provide a (non-standard) option for not using excep-
tions for really minimal, close-to-the-hardware, programs.

6.1.2 The Basic Source Character Set

The C++ standard and the examples in this book are written using the basic source character set
consisting of the letters, digits, graphical characters, and whitespace characters from the U.S. vari-
ant of the international 7-bit character set ISO 646-1983 called ASCII (ANSI3.4-1968). This can
cause problems for people who use C++ in an environment with a different character set:
e ASCII contains punctuation characters and operator symbols (such as ], {, and !) that are not
available in some character sets.
* We need a notation for characters that do not have a convenient character representation
(such as newline and ‘“‘the character with value 17°).
e ASCII doesn’t contain characters (such as A, b, and /) that are used for writing languages
other than English.
To use an extended character set for source code, a programming environment can map the
extended character set into the basic source character set in one of several ways, for example, by
using universal character names (§6.2.3.2).
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6.2 Types

Consider:
x = y+f(2);

For this to make sense in a C++ program, the names x, y, and f must be suitably declared. That is,
the programmer must specify that entities named x, y, and f exist and that they are of types for
which = (assignment), + (addition), and () (function call), respectively, are meaningful.

Every name (identifier) in a C++ program has a type associated with it. This type determines
what operations can be applied to the name (that is, to the entity referred to by the name) and how
such operations are interpreted. For example:

float x; /l x is a floating-point variable
inty=7; /'y is an integer variable with the initial value 7
float f(int); // fis a function taking an argument of type int and returning a floating-point number

These declarations would make the example meaningful. Because y is declared to be an int, it can
be assigned to, used as an operand for +, etc. On the other hand, f is declared to be a function that
takes an int as its argument, so it can be called given the interger 2.

This chapter presents fundamental types (§6.2.1) and declarations (§6.3). Its examples just
demonstrate language features; they are not intended to do anything useful. More extensive and
realistic examples are saved for later chapters. This chapter simply provides the most basic ele-
ments from which C++ programs are constructed. You must know these elements, plus the termi-
nology and simple syntax that go with them, in order to complete a real project in C++ and espe-
cially to read code written by others. However, a thorough understanding of every detail mentioned
in this chapter is not a requirement for understanding the following chapters. Consequently, you
may prefer to skim through this chapter, observing the major concepts, and return later as the need
for understanding more details arises.

6.2.1 Fundamental Types

C++ has a set of fundamental types corresponding to the most common basic storage units of a
computer and the most common ways of using them to hold data:
§6.2.2 A Boolean type (bool)
§6.2.3 Character types (such as char and wchar _t)
§6.2.4 Integer types (such as int and long long)
§6.2.5 Floating-point types (such as double and long double)
§6.2.7 A type, void, used to signify the absence of information
From these types, we can construct other types using declarator operators:
§7.2  Pointer types (such as intx)
§7.3  Array types (such as charf])
§7.7  Reference types (such as double& and vector<int>&&)
In addition, a user can define additional types:
§8.2  Data structures and classes (Chapter 16)
§8.4  Enumeration types for representing specific sets of values (enum and enum class)
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The Boolean, character, and integer types are collectively called integral types. The integral and
floating-point types are collectively called arithmetic types. Enumerations and classes (Chapter 16)
are called user-defined types because they must be defined by users rather than being available for
use without previous declaration, the way fundamental types are. In contrast, fundamental types,
pointers, and references are collectively referred to as built-in types. The standard library provides
many user-defined types (Chapter 4, Chapter 5).

The integral and floating-point types are provided in a variety of sizes to give the programmer a
choice of the amount of storage consumed, the precision, and the range available for computations
(§6.2.8). The assumption is that a computer provides bytes for holding characters, words for hold-
ing and computing integer values, some entity most suitable for floating-point computation, and
addresses for referring to those entities. The C++ fundamental types together with pointers and
arrays present these machine-level notions to the programmer in a reasonably implementation-inde-
pendent manner.

For most applications, we could use bool for logical values, char for characters, int for integer
values, and double for floating-point values. The remaining fundamental types are variations for
optimizations, special needs, and compatibility that are best ignored until such needs arise.

6.2.2 Booleans

A Boolean, bool, can have one of the two values true or false. A Boolean is used to express the
results of logical operations. For example:

void f(int a, int b)

{
bool b1 {a==b};
/...

}

If a and b have the same value, b1 becomes true; otherwise, b1 becomes false.
A common use of bool is as the type of the result of a function that tests some condition (a pred-
icate). For example:

bool is_open(Filex);

bool greater(int a, int b) { return a>b; }

By definition, true has the value 1 when converted to an integer and false has the value 0. Con-
versely, integers can be implicitly converted to bool values: nonzero integers convert to true and 0
converts to false. For example:

bool b1 =7; // 7!=0, so b becomes true
bool b2 {7};  // error: narrowing (§2.2.2, §10.5)

inti1 =true; // i1 becomes 1
int i2 {true}; // i2 becomes 1

If you prefer to use the {}-initializer syntax to prevent narrowing, yet still want to convert an int to a
bool, you can be explicit:
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void f(int i)

{
bool b {i!=0};
/...

h

In arithmetic and logical expressions, bools are converted to ints; integer arithmetic and logical
operations are performed on the converted values. If the result needs to be converted back to bool,
a 0 is converted to false and a nonzero value is converted to true. For example:

bool a = true;
bool b = true;

bool x = a+b; // a+bis 2, so x becomes true
booly =allb; // aflbis 1, soy becomes true ("||" means "or"
bool z=a-b; // a-bis 0, so zbecomes false

A pointer can be implicitly converted to a bool (§10.5.2.5). A non-null pointer converts to true;
pointers with the value nullptr convert to false. For example:

void g(int+ p)

{
bool b = p; // narrows to true or false
bool b2 {p!=nullptr}; 1/l explicit test against nullptr
if (p) { /l equivalent to p!=nullptr
/...
}
}

I prefer if (p) over if (p!=nullptr) because it more directly expresses the notion ““if p is valid”’ and also
because it is shorter. The shorter form leaves fewer opportunities for mistakes.

6.2.3 Character Types

There are many character sets and character set encodings in use. C++ provides a variety of char-
acter types that reflect that — often bewildering — variety:
* char: The default character type, used for program text. A char is used for the implementa-
tion’s character set and is usually 8 bits.
* signed char: Like char, but guaranteed to be signed, that is, capable of holding both positive
and negative values.
* unsigned char: Like char, but guaranteed to be unsigned.
* wchar_t: Provided to hold characters of a larger character set such as Unicode (see §7.3.2.2).
The size of wchar_t is implementation-defined and large enough to hold the largest character
set supported by the implementation’s locale (Chapter 39).
* char16_t: A type for holding 16-bit character sets, such as UTF-16.
* char32_t: A type for holding 32-bit character sets, such as UTF-32.
These are six distinct types (despite the fact that the _t suffix is often used to denote aliases; §6.5).
On each implementation, the char type will be identical to that of either signed char or unsigned



Section 6.2.3 Character Types 141

char, but these three names are still considered separate types.
A char variable can hold a character of the implementation’s character set. For example:

char ch ="a';

Almost universally, a char has 8 bits so that it can hold one of 256 different values. Typically, the
character set is a variant of ISO-646, for example ASCII, thus providing the characters appearing
on your keyboard. Many problems arise from the fact that this set of characters is only partially
standardized.

Serious variations occur between character sets supporting different natural languages and
between character sets supporting the same natural language in different ways. Here, we are inter-
ested only in how such differences affect the rules of C++. The larger and more interesting issue of
how to program in a multilingual, multi-character-set environment is beyond the scope of this book,
although it is alluded to in several places (§6.2.3, §36.2.1, Chapter 39).

It is safe to assume that the implementation character set includes the decimal digits, the 26
alphabetic characters of English, and some of the basic punctuation characters. It is not safe to
assume that:

e There are no more than 127 characters in an 8-bit character set (e.g., some sets provide 255

characters).

¢ There are no more alphabetic characters than English provides (most European languages
provide more, e.g., &, b, and B).

¢ The alphabetic characters are contiguous (EBCDIC leaves a gap between 'i' and 'j'").

e Every character used to write C++ is available (e.g., some national character sets do not pro-
vide {,}, [, 1, I, and \).

e A char fits in 1 byte. There are embedded processors without byte accessing hardware for
which a char is 4 bytes. Also, one could reasonably use a 16-bit Unicode encoding for the
basic chars.

Whenever possible, we should avoid making assumptions about the representation of objects. This
general rule applies even to characters.

Each character has an integer value in the character set used by the implementation. For exam-
ple, the value of 'b' is 98 in the ASCII character set. Here is a loop that outputs the the integer value
of any character you care to input:

void intval()

{
for (char c; cin>>c;)
cout << "the value of " << c << "' is " << int{c} << "\n';

}

The notation int{c} gives the integer value for a character ¢ (“‘the int we can construct from ¢”).
The possibility of converting a char to an integer raises the question: is a char signed or unsigned?
The 256 values represented by an 8-bit byte can be interpreted as the values 0 to 255 or as the val-
ues -127 to 127. No, not -128 to 127 as one might expect: the C++ standard leaves open the possi-
bility of one’s-complement hardware and that eliminates one value; thus, a use of -128 is non-
portable. Unfortunately, the choice of signed or unsigned for a plain char is implementation-
defined. C++ provides two types for which the answer is definite: signed char, which can hold at
least the values -127 to 127, and unsigned char, which can hold at least the values 0 to 255.
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Fortunately, the difference matters only for values outside the 0 to 127 range, and the most common
characters are within that range.
Values outside that range stored in a plain char can lead to subtle portability problems. See
§6.2.3.1 if you need to use more than one type of char or if you store integers in char variables.
Note that the character types are integral types (§6.2.1) so that arithmetic and bitwise logical
operations (§10.3) apply. For example:

void digits()
{
for (int i=0; i!=10; ++i)
cout << static_cast<char>('0"+i);

}

This is a way of writing the ten digits to cout. The character literal '0' is converted to its integer
value and i is added. The resulting int is then converted to a char and written to cout. Plain '0'+i is
an int, so if I had left out the static_cast<char>, the output would have been something like 48, 49,
and so on, rather than 0, 1, and so on.

6.2.3.1 Signed and Unsigned Characters

It is implementation-defined whether a plain char is considered signed or unsigned. This opens the
possibility for some nasty surprises and implementation dependencies. For example:

char ¢ =255; // 255 is “all ones,” hexadecimal OxFF

inti=c;
What will be the value of i? Unfortunately, the answer is undefined. On an implementation with
8-bit bytes, the answer depends on the meaning of the ‘““all ones™ char bit pattern when extended
into an int. On a machine where a char is unsigned, the answer is 255. On a machine where a char
is signed, the answer is —=1. In this case, the compiler might warn about the conversion of the literal
255 to the char value -1. However, C++ does not offer a general mechanism for detecting this kind
of problem. One solution is to avoid plain char and use the specific char types only. Unfortunately,
some standard-library functions, such as stremp(), take plain chars only (§43.4).

A char must behave identically to either a signed char or an unsigned char. However, the three
char types are distinct, so you can’t mix pointers to different char types. For example:

void f(char ¢, signed char sc, unsigned char uc)

{
char: pc = &uc; 1/l error: no pointer conversion
signed char: psc = pc; 1/ error: no pointer conversion
unsigned char: puc = pc; // error: no pointer conversion
psc = puc; // error: no pointer conversion
}

Variables of the three char types can be freely assigned to each other. However, assigning a too-
large value to a signed char (§10.5.2.1) is still undefined. For example:

void g(char c, signed char sc, unsigned char uc)

{

c =255; // implementation-defined if plain chars are signed and have 8 bits
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c=sc; [/ OK

c=uc; // implementation-defined if plain chars are signed and if uc’s value is too large

sc =uc; // implementation defined if uc’s value is too large
uc = sc; // OK: conversion to unsigned

sc=c; // implementation-defined if plain chars are unsigned and if ¢’s value is too large

uc=c; // OK: conversion to unsigned

}
To be concrete, assume that a char is 8 bits:

signed char sc = -160;
unsigned char uc =sc; // uc == 116 (because 256-160==116)

cout << uc; / print 't'

char count[256]; /I assume 8-bit chars

++count[sc]; /! likely disaster: out-of-range access
++count[uc]; /Il OK

143

None of these potential problems and confusions occur if you use plain char throughout and avoid

negative character values.

6.2.3.2 Character Literals

A character literal is a single character enclosed in single quotes, for example, 'a' and '0’. The type
of a character literal is char. A character literal can be implicitly converted to its integer value in
the character set of the machine on which the C++ program is to run. For example, if you are run-
ning on a machine using the ASCII character set, the value of '0' is 48. The use of character literals

rather than decimal notation makes programs more portable.

A few characters have standard names that use the backslash, \, as an escape character:

Name ASCII Name  C++ Name
Newline NL (LF) \n
Horizontal tab HT \t
Vertical tab VT \\%
Backspace BS \b
Carriage return CR \r
Form feed FF \f
Alert BEL \a
Backslash \ \
Question mark ? \?
Single quote ! v
Double quote " \"

Octal number 000 \000
Hexadecimal number  hhh \xhhh ...

Despite their appearance, these are single characters.

We can represent a character from the implementation character set as a one-, two-, or three-
digit octal number (\ followed by octal digits) or as a hexadecimal number (\x followed by
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hexadecimal digits). There is no limit to the number of hexadecimal digits in the sequence. A
sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit
or a hexadecimal digit, respectively. For example:

Octal Hexadecimal Decimal ASCII

\6' "\x6' 6 ACK
\60' "x30' 48 ‘0’
\137' "\x05f' 95 v

This makes it possible to represent every character in the machine’s character set and, in particular,
to embed such characters in character strings (see §7.3.2). Using any numeric notation for charac-
ters makes a program nonportable across machines with different character sets.

It is possible to enclose more than one character in a character literal, for example, 'ab'. Such
uses are archaic, implementation-dependent, and best avoided. The type of such a multicharacter
literal is int.

When embedding a numeric constant in a string using the octal notation, it is wise always to use
three digits for the number. The notation is hard enough to read without having to worry about
whether or not the character after a constant is a digit. For hexadecimal constants, use two digits.
Consider these examples:

char vi[] = "a\xah\129"; // 6 chars: 'a' '\xa' 'h' \12"'9' 0’
char v2[] = "a\xah\127"; /I 5 chars: 'a' \xa' 'h' \127' '\0'
char v3[] = "a\xad\127"; /l 4 chars: ‘a' '\xad' \127' 0"
char v4[] = "a\xad\0127"; /l 5 chars: ‘a' '\xad' \012' '7' 0’

Wide character literals are of the form L'ab' and are of type wchar_t. The number of characters
between the quotes and their meanings are implementation-defined.

A C++ program can manipulate character sets that are much richer than the 127-character
ASCII set, such as Unicode. Literals of such larger character sets are presented as sequences of
four or eight hexadecimal digits preceded by a U or a u. For example:

U\UFADEBEEF'
u"\uDEAD'
u"\xDEAD'

The shorter notation u"\uXXXX' is equivalent to U\U0000XXXX' for any hexadecimal digit X. A num-
ber of hexadecimal digits different from four or eight is a lexical error. The meaning of the hexa-
decimal number is defined by the ISO/IEC 10646 standard and such values are called universal
character names. In the C++ standard, universal character names are described in §iso.2.2,
§is0.2.3, §is0.2.14.3, §is0.2.14.5, and $§iso.E.

6.2.4 Integer Types

Like char, each integer type comes in three forms: “plain’ int, signed int, and unsigned int. In addi-
tion, integers come in four sizes: short int, “plain” int, long int, and long long int. A long int can be
referred to as plain long, and a long long int can be referred to as plain long long. Similarly, short is
a synonym for short int, unsigned for unsigned int, and signed for signed int. No, there is no long
short int equivalent to int.
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The unsigned integer types are ideal for uses that treat storage as a bit array. Using an unsigned
instead of an int to gain one more bit to represent positive integers is almost never a good idea.
Attempts to ensure that some values are positive by declaring variables unsigned will typically be
defeated by the implicit conversion rules (§10.5.1, §10.5.2.1).

Unlike plain chars, plain ints are always signed. The signed int types are simply more explicit
synonyms for their plain int counterparts, rather than different types.

If you need more detailed control over integer sizes, you can use aliases from <cstdint> (§43.7),
such as int64_t (a signed integer with exactly 64 bits), uint_fast16_t (an unsigned integer with
exactly 8 bits, supposedly the fastest such integer), and int_least32_t (a signed integer with at least
32 bits, just like plain int). The plain integer types have well-defined minimal sizes (§6.2.8), so the
<cstdint> are sometimes redundant and can be overused.

In addition to the standard integer types, an implementation may provide extended integer types
(signed and unsigned). These types must behave like integers and are considered integer types
when considering conversions and integer literal values, but they usually have greater range
(occupy more space).

6.2.4.1 Integer Literals

Integer literals come in three guises: decimal, octal, and hexadecimal. Decimal literals are the most
commonly used and look as you would expect them to:

7 1234 976 12345678901234567890

The compiler ought to warn about literals that are too long to represent, but an error is only guaran-
teed for {} initializers (§6.3.5).

A literal starting with zero followed by x or X (0x or 0X) is a hexadecimal (base 16) number. A
literal starting with zero but not followed by x or X is an octal (base 8) number. For example:

Decimal  Octal Hexadecimal
0 0x0

2 02 0x2

63 077 0x3f

83 0123 0x63

The letters a, b, c, d, e, and f, or their uppercase equivalents, are used to represent 10, 11, 12, 13, 14,
and 15, respectively. Octal and hexadecimal notations are most useful for expressing bit patterns.
Using these notations to express genuine numbers can lead to surprises. For example, on a machine
on which an int is represented as a two’s complement 16-bit integer, Oxffff is the negative decimal
number -1. Had more bits been used to represent an integer, it would have been the positive deci-
mal number 65535.

The suffix U can be used to write explicitly unsigned literals. Similarly, the suffix L can be used
to write explicitly long literals. For example, 3 is an int, 3U is an unsigned int, and 3L is a long int.

Combinations of suffixes are allowed. For example:

cout << OXFOUL <<''<<0OLU << '\n';
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If no suffix is provided, the compiler gives an integer literal a suitable type based on its value and
the implementation’s integer sizes (§6.2.4.2).

It is a good idea to limit the use of nonobvious constants to a few well-commented const (§7.5),
constexpr (§10.4), and enumerator (§8.4) initializers.

6.2.4.2 Types of Integer Literals

In general, the type of an integer literal depends on its form, value, and suffix:

e Ifitis decimal and has no suffix, it has the first of these types in which its value can be rep-
resented: int, long int, long long int.

e Ifitis octal or hexadecimal and has no suffix, it has the first of these types in which its value
can be represented: int, unsigned int, long int, unsigned long int, long long int, unsigned long
long int.

e If it is suffixed by u or U, its type is the first of these types in which its value can be repre-
sented: unsigned int, unsigned long int, unsigned long long int.

» If it is decimal and suffixed by I or L, its type is the first of these types in which its value can
be represented: long int, long long int.

» If it is octal or hexadecimal and suffixed by I or L, its type is the first of these types in which
its value can be represented: long int, unsigned long int, long long int, unsigned long long int.

e [If it is suffixed by ul, lu, uL, Lu, UL, IU, UL, or LU, its type is the first of these types in which
its value can be represented: unsigned long int, unsigned long long int.

» Ifitis decimal and is suffixed by Il or LL, its type is long long int.

e [If it is octal or hexadecimal and is suffixed by Il or LL, its type is the first of these types in
which its value can be represented: long long int, unsigned long long int.

e Ifitis suffixed by llu, U, ull, U, LLu, LLU, uLL, or ULL, its type is unsigned long long int.

For example, 100000 is of type int on a machine with 32-bit ints but of type long int on a machine
with 16-bit ints and 32-bit longs. Similarly, 0XA000 is of type int on a machine with 32-bit ints but
of type unsigned int on a machine with 16-bit ints. These implementation dependencies can be
avoided by using suffixes: 100000L is of type long int on all machines and 0XA000U is of type
unsigned int on all machines.

6.2.5 Floating-Point Types

The floating-point types represent floating-point numbers. A floating-point number is an approxi-
mation of a real number represented in a fixed amount of memory. There are three floating-point
types: float (single-precision), double (double-precision), and long double (extended-precision).

The exact meaning of single-, double-, and extended-precision is implementation-defined.
Choosing the right precision for a problem where the choice matters requires significant under-
standing of floating-point computation. If you don’t have that understanding, get advice, take the
time to learn, or use double and hope for the best.

6.2.5.1 Floating-Point Literals

By default, a floating-point literal is of type double. Again, a compiler ought to warn about float-
ing-point literals that are too large to be represented. Here are some floating-point literals:
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1.23 .23 023 1. 1.0 1.2e10 1.23e-15

Note that a space cannot occur in the middle of a floating-point literal. For example, 65.43 e-21 is
not a floating-point literal but rather four separate lexical tokens (causing a syntax error):

6543 e - 21

If you want a floating-point literal of type float, you can define one using the suffix f or F:
3.14159265f 2.0f 2.997925F 2.9e-3f

If you want a floating-point literal of type long double, you can define one using the suffix I or L:

3.14159265L 2.0L 2.997925L 2.9e-3L

6.2.6 Prefixes and Suffixes

There is a minor zoo of suffixes indicating types of literals and also a few prefixes:

Arithmetic Literal Prefixes and Suffixes

Notation #fix Meaning Example Reference ISO

0 prefix  octal 0776 §6.2.4.1 §iso0.2.14.2
0x 0X prefix  hexadecimal Oxff §6.2.4.1 §iso0.2.14.2
u U suffix unsigned 10U §6.2.4.1 §iso0.2.14.2
I L suffix  long 20000L §6.2.4.1 §is0.2.14.2
] LL suffix long long 20000LL §6.2.4.1 §iso0.2.14.2
f F suffix ~ float 10f §6.2.5.1 §iso.2.14.4
e E infix floating-point 10e-4 §6.2.5.1 §iso.2.14.4
. infix floating-point 12.3 §6.2.5.1 §iso.2.14.4
' prefix  char 'c' §6.2.3.2 §is0.2.14.3
u' prefix  char16_t u'c' §6.2.3.2 §is0.2.14.3
u' prefix  char32_t u'c' §6.2.3.2 §is0.2.14.3
L prefix  wchar_t L'c' §6.2.3.2 §is0.2.14.3
" prefix  string "mess" §7.3.2 §is0.2.14.5
R" prefix  raw string R"(\b)" §7.3.2.1 §iso.2.14.5
ug" usR"  prefix  UTF-8 string ug"foo" §7.3.2.2 §is0.2.14.5
u" uR" prefix ~ UTF-16 string  u"foo" §7.3.2.2 §is0.2.14.5
u" UR" prefix ~ UTF-32 string  U"foo" §7.3.2.2 §is0.2.14.5
L" LR" prefix  wchar_tstring  L"foo" §7.3.2.2 §is0.2.14.5

Note that “string” here means ‘“‘string literal” (§7.3.2) rather than ‘““of type std::string.”

Obviously, we could also consider . and e as infix and R" and u8" as the first part of a set of
delimiters. However, I consider the nomenclature less important than giving an overview of the
bewildering variety of literals.

The suffixes | and L can be combined with the suffixes u and U to express unsigned long types.
For example:
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1LU // unsigned long

2UL // unsigned long
3ULL // unsigned long long
4LLU // unsigned long long
5LUL // error

The suffixes I and L can be used for floating-point literals to express long double. For example:

1L /l long int
1.0L // long double

Combinations of R, L, and u prefixes are allowed, for example, uR":+(foo\(bar))+=". Note the dra-
matic difference in the meaning of a U prefix for a character (unsigned) and for a string UTF-32
encoding (§7.3.2.2).

In addition, a user can define new suffixes for user-defined types. For example, by defining a
user-defined literal operator (§19.2.6), we can get

"foo bar"s // a literal of type std::string
123_km /! a literal of type Distance

Suffixes not starting with _ are reserved for the standard library.

6.2.7 void

The type void is syntactically a fundamental type. It can, however, be used only as part of a more
complicated type; there are no objects of type void. It is used either to specify that a function does
not return a value or as the base type for pointers to objects of unknown type. For example:

void x; 1/ error: there are no void objects

void& r; // error: there are no references to void

void f(); // function f does not return a value (§12.1.4)
void: pv; /l pointer to object of unknown type (§7.2.1)

When declaring a function, you must specify the type of the value returned. Logically, you would
expect to be able to indicate that a function didn’t return a value by omitting the return type. How-
ever, that would make a mess of the grammar (§iso.A). Consequently, void is used as a ‘“pseudo
return type” to indicate that a function doesn’t return a value.

6.2.8 Sizes

Some of the aspects of C++’s fundamental types, such as the size of an int, are implementation-
defined (§6.1). I point out these dependencies and often recommend avoiding them or taking steps
to minimize their impact. Why should you bother? People who program on a variety of systems or
use a variety of compilers care a lot because if they don’t, they are forced to waste time finding and
fixing obscure bugs. People who claim they don’t care about portability usually do so because they
use only a single system and feel they can afford the attitude that “the language is what my com-
piler implements.” This is a narrow and shortsighted view. If your program is a success, it will be
ported, so someone will have to find and fix problems related to implementation-dependent fea-
tures. In addition, programs often need to be compiled with other compilers for the same system,
and even a future release of your favorite compiler may do some things differently from the current
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one. It is far easier to know and limit the impact of implementation dependencies when a program
is written than to try to untangle the mess afterward.

It is relatively easy to limit the impact of implementation-dependent language features. Limit-
ing the impact of system-dependent library facilities is far harder. Using standard-library facilities
wherever feasible is one approach.

The reason for providing more than one integer type, more than one unsigned type, and more
than one floating-point type is to allow the programmer to take advantage of hardware characteris-
tics. On many machines, there are significant differences in memory requirements, memory access
times, and computation speed among the different varieties of fundamental types. If you know a
machine, it is usually easy to choose, for example, the appropriate integer type for a particular vari-
able. Writing truly portable low-level code is harder.

Here is a graphical representation of a plausible set of fundamental types and a sample string
literal (§7.3.2):

char

=] [=]

bool

short 756

int 100000000

long 1234567890

long long 1234567890

intx &c1

|
|
|
|

double 1234567e34

long double 123456734 ‘

char[14]

Hello, worldN\0 \

On the same scale (.2 inch to a byte), a megabyte of memory would stretch about 3 miles (5 km) to
the right.

Sizes of C++ objects are expressed in terms of multiples of the size of a char, so by definition
the size of a char is 1. The size of an object or type can be obtained using the sizeof operator
(§10.3). This is what is guaranteed about sizes of fundamental types:

* 1 = sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long) < sizeof(long long)
* 1 < sizeof(bool) < sizeof(long)

* sizeof(char) < sizeof(wchar_t) < sizeof(long)

* sizeof(float) < sizeof(double) < sizeof(long double)

* sizeof(N) = sizeof(signed N) = sizeof(unsigned N)
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In that last line, N can be char, short, int, long, or long long. In addition, it is guaranteed that a char
has at least 8 bits, a short at least 16 bits, and a long at least 32 bits. A char can hold a character of
the machine’s character set. The char type is supposed to be chosen by the implementation to be
the most suitable type for holding and manipulating characters on a given computer; it is typically
an 8-bit byte. Similarly, the int type is supposed to be chosen to be the most suitable for holding
and manipulating integers on a given computer; it is typically a 4-byte (32-bit) word. It is unwise
to assume more. For example, there are machines with 32-bit chars. It is extremely unwise to
assume that the size of an int is the same as the size of a pointer; many machines (*‘64-bit architec-
tures’) have pointers that are larger than integers. Note that it is not guaranteed that
sizeof(long)<sizeof(long long) or that sizeof(double)<sizeof(long double).

Some implementation-defined aspects of fundamental types can be found by a simple use of
sizeof, and more can be found in <limits>. For example:

#include <limits> // §40.2
#include <iostream>

int main()

{
cout << "size of long " << sizeof(1L) << "\n';
cout << "size of long long " << sizeof(1LL) << \n';

cout << "largest float == " << std::numeric_limits<float>::max() << "\n';
cout << "char is signed == " << std::numeric_limits<char>::is_signed << \n';

}

The functions in <limits> (§40.2) are constexpr (§10.4) so that they can be used without run-time
overhead and in contexts that require a constant expression.

The fundamental types can be mixed freely in assignments and expressions. Wherever possible,
values are converted so as not to lose information (§10.5).

If a value v can be represented exactly in a variable of type T, a conversion of v to T is value-
preserving. Conversions that are not value-preserving are best avoided (§2.2.2, §10.5.2.6).

If you need a specific size of integer, say, a 16-bit integer, you can #include the standard header
<cstdint> that defines a variety of types (or rather type aliases; §6.5). For example:

int16_t x {Oxaabb}; /l 2 bytes

int64_t xxxx {Oxaaaabbbbccccdddd}; // 8 bytes

int_least16_t y; 1/ at least 2 bytes (just like int)
int_least32_t yy / at least 4 bytes (just like long)
int_fast32_t z; // the fastest int type with at least 4 bytes

The standard header <cstddef> defines an alias that is very widely used in both standard-library dec-
larations and user code: size_t is an implementation-defined unsigned integer type that can hold the
size in bytes of every object. Consequently, it is used where we need to hold an object size. For
example:

void: allocate(size_t n); // get n bytes

Similarly, <cstddef> defines the signed integer type ptrdiff_t for holding the result of subtracting two
pointers to get a number of elements.
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6.2.9 Alignment

An object doesn’t just need enough storage to hold its representation. In addition, on some
machine architectures, the bytes used to hold it must have proper alignment for the hardware to
access it efficiently (or in extreme cases to access it at all). For example, a 4-byte int often has to be
aligned on a word (4-byte) boundary, and sometimes an 8-byte double has to be aligned on a word
(8-byte) boundary. Of course, this is all very implementation specific, and for most programmers
completely implicit. You can write good C++ code for decades without needing to be explicit
about alignment. Where alignment most often becomes visible is in object layouts: sometimes
structs contain ‘“‘holes” to improve alignment (§8.2.1).
The alignof() operator returns the alignment of its argument expression. For example:

auto ac = alignof('c'); / the alignment of a char
auto ai = alignof(1); // the alignment of an int
auto ad = alignof(2.0);  // the alignment of a double

int a[20];
auto aa = alignof(a); / the alignment of an int

Sometimes, we have to use alignment in a declaration, where an expression, such as alignof(x+y) is
not allowed. Instead, we can use the type specifier alignas: alignas(T) means “‘align just like a T.”
For example, we can set aside uninitialized storage for some type X like this:

void user(const vector<X>& vx)

{
constexpr int bufmax = 1024;
alignas(X) buffer[bufmax]; /l uninitialized
const int max = min(vx.size(),bufmax/sizeof(X));
uninitialized_copy(vx.begin(),vx.begin()+max,buffer);
/...

}

6.3 Declarations

Before a name (identifier) can be used in a C++ program, it must be declared. That is, its type must
be specified to inform the compiler what kind of entity the name refers to. For example:

char ch;

string s;

auto count = 1;

const double pi {3.1415926535897};
extern int error_number;

const char+ name = "Njal";
const char: season[] = { "spring", "summer", "fall", "winter" };
vector<string> people { name, "Skarphedin", "Gunnar" };
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struct Date { intd, m, y; };

int day(Date* p) { return p—>d; }

double sqrt(double);

template<class T> T abs(T a) { returna<0 ? -a : a; }

constexpr int fac(int n) { return (n<2)?1:n+fac(n-1); }  // possible compile-time evaluation (§2.2.3)

constexpr double zz { ii+fac(7) }; /I compile-time initialization
using Cmplx = std::complex<double>; / type alias (§3.4.5, §6.5)
struct User; /l type name

enum class Beer { Carlsberg, Tuborg, Thor };
namespace NS { int a; }

As can be seen from these examples, a declaration can do more than simply associate a type with a
name. Most of these declarations are also definitions. A definition is a declaration that supplies all
that is needed in a program for the use of an entity. In particular, if it takes memory to represent
something, that memory is set aside by its definition. A different terminology deems declarations
parts of an interface and definitions parts of an implementation. When taking that view, we try to
compose interfaces out of declarations that can be replicated in separate files (§15.2.2); definitions
that set aside memory do not belong in interfaces.
Assuming that these declarations are in the global scope (§6.3.4), we have:

char ch; // set aside memory for a char and initialize it to O
auto count = 1; 1/ set aside memory for an int initialized to 1
const char+ name = "Njal"; 1/l set aside memory for a pointer to char

1/ set aside memory for a string literal "Njal"
// initialize the pointer with the address of that string literal

struct Date { intd, m, y; }; // Date is a struct with three members
int day(Date* p) { return p—>d; } /l day is a function that executes the specified code

using Point = std::complex<short>;// Point is a name for std::complex<short>

Of the declarations above, only three are not also definitions:

double sqrt(double); // function declaration
extern int error_number; // variable declaration
struct User; // type name declaration

That is, if used, the entity they refer to must be defined elsewhere. For example:

double sqrt(double d) {7~ ... */}
int error_number =1;
struct User { /* ... */ };

There must always be exactly one definition for each name in a C++ program (for the effects of
#include, see §15.2.3). However, there can be many declarations.
All declarations of an entity must agree on its type. So, this fragment has two errors:

int count;
int count; // error: redefinition
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extern int error_number;
extern short error_number; / error: type mismatch

This has no errors (for the use of extern, see §15.2):

extern int error_number;
extern int error_number; / OK: redeclaration

Some definitions explicitly specify a “value” for the entities they define. For example:

struct Date { intd, m, y; };

using Point = std::complex<short>; // Point is a name for std::complex<short>
int day(Date p) { return p—>d; }

const double pi {3.1415926535897};

For types, aliases, templates, functions, and constants, the ‘““value” is permanent. For non-const
data types, the initial value may be changed later. For example:

void f()

{
int count {1}; // initialize count to 1
const charx name {"Bjarne"}; // name is a variable that points to a constant (§7.5)
count =2; 1/l assign 2 to count
name = "Marian";

}

Of the definitions, only two do not specify values:
char ch;
string s;

See §6.3.5 and §17.3.3 for explanations of how and when a variable is assigned a default value.
Any declaration that specifies a value is a definition.

6.3.1 The Structure of Declarations

The structure of a declaration is defined by the C++ grammar (§iso.A). This grammar evolved over
four decades, starting with the early C grammars, and is quite complicated. However, without too
many radical simplifications, we can consider a declaration as having five parts (in order):

Optional prefix specifiers (e.g., static or virtual)

A base type (e.g., vector<double> or const int)

A declarator optionally including a name (e.g., p[7], n, or #(+)[])
Optional suffix function specifiers (e.g., const or noexcept)

An optional initializer or function body (e.g., ={7,5,3} or {return x;})

Except for function and namespace definitions, a declaration is terminated by a semicolon. Con-
sider a definition of an array of C-style strings:

const char: kings[] = { "Antigonus", "Seleucus", "Ptolemy" };

Here, the base type is const char, the declarator is *kings[], and the initializer is the = followed by
the {}-list.

A specifier is an initial keyword, such as virtual (§3.2.3, §20.3.2), extern (§15.2), or constexpr
(§2.2.3), that specifies some non-type attribute of what is being declared.
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A declarator is composed of a name and optionally some declarator operators. The most com-
mon declarator operators are:

Declarator Operators
prefix * pointer
prefix +const constant pointer
prefix +volatile  volatile pointer
prefix & Ivalue reference (§7.7.1)
prefix && rvalue reference (§7.7.2)
prefix auto function (using suffix return type)
postfix ] array
postfix () function
postfix - returns from function

Their use would be simple if they were all either prefix or postfix. However, *, [], and () were

designed to mirror their use in expressions (§10.3). Thus, * is prefix and [] and () are postfix. The

postfix declarator operators bind tighter than the prefix ones. Consequently, charkings[] is an array

of pointers to char, whereas char(+kings)[] is a pointer to an array of char. We have to use parenthe-

ses to express types such as “pointer to array’ and ‘“pointer to function”; see the examples in §7.2.
Note that the type cannot be left out of a declaration. For example:

constc=7; // error: no type

gt(int a, int b) // error: no return type

{

return (a>b) ? a: b;

}

unsigned ui; // OK: “unsigned”’means “unsigned int”
long li; /I OK: “long” means “long int”

In this, standard C++ differs from early versions of C and C++ that allowed the first two examples
by considering int to be the type when none was specified (§44.3). This “implicit int” rule was a
source of subtle errors and much confusion.

Some types have names composed out of multiple keywords, such as long long and volatile int.
Some type names don’t even look much like names, such as decltype(f(x)) (the return type of a call
f(x); §6.3.6.3).

The volatile specifier is described in §41.4.

The alignas() specifier is described in §6.2.9.

6.3.2 Declaring Multiple Names

It is possible to declare several names in a single declaration. The declaration simply contains a list
of comma-separated declarators. For example, we can declare two integers like this:

intx,y; Il int x; int y;
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Operators apply to individual names only — and not to any subsequent names in the same declara-
tion. For example:

int+ p, y; Il int* p; inty;  NOT int*y;

int x, *q; Il int x; int* g;

int v[10], =pv; // int v[10]; int* pv;
Such declarations with multiple names and nontrivial declarators make a program harder to read
and should be avoided.

6.3.3 Names

A name (identifier) consists of a sequence of letters and digits. The first character must be a letter.
The underscore character, _, is considered a letter. C++ imposes no limit on the number of charac-
ters in a name. However, some parts of an implementation are not under the control of the compiler
writer (in particular, the linker), and those parts, unfortunately, sometimes do impose limits. Some
run-time environments also make it necessary to extend or restrict the set of characters accepted in
an identifier. Extensions (e.g., allowing the character $ in a name) yield nonportable programs. A
C++ keyword (§6.3.3.1), such as new or int, cannot be used as a name of a user-defined entity.
Examples of names are:

hello this_is_a_most_unusually_long_identifier_that_is_better_avoided
DEFINED foO bAr u_name HorseSense
var0 vari CLASS _class

Examples of character sequences that cannot be used as identifiers are:

012 a fool $sys class 3var
pay.due foo bar .name if

Nonlocal names starting with an underscore are reserved for special facilities in the implementation
and the run-time environment, so such names should not be used in application programs. Simi-
larly, names starting with a double underscore (__) or an underscore followed by an uppercase letter
(e.g., _Foo) are reserved (§is0.17.6.4.3).

When reading a program, the compiler always looks for the longest string of characters that
could make up a name. Hence, var10 is a single name, not the name var followed by the number 10.
Also, elseif is a single name, not the keyword else followed by the keyword if.

Uppercase and lowercase letters are distinct, so Count and count are different names, but it is
often unwise to choose names that differ only by capitalization. In general, it is best to avoid
names that differ only in subtle ways. For example, in some fonts, the uppercase “o” (0) and zero
(0) can be hard to tell apart, as can the lowercase “L” (1), uppercase “i”’ (), and one (1). Conse-
quently, 10, 10, 11, I, and 111 are poor choices for identifier names. Not all fonts have the same prob-
lems, but most have some.

Names from a large scope ought to have relatively long and reasonably obvious names, such as
vector, Window_with_border, and Department_number. However, code is clearer if names used only
in a small scope have short, conventional names such as x, i, and p. Functions (Chapter 12), classes
(Chapter 16), and namespaces (§14.3.1) can be used to keep scopes small. It is often useful to keep
frequently used names relatively short and reserve really long names for infrequently used entities.
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Choose names to reflect the meaning of an entity rather than its implementation. For example,
phone_book is better than number_vector even if the phone numbers happen to be stored in a vector
(§4.4). Do not encode type information in a name (e.g., pcname for a name that’s a char+ or icount
for a count that’s an int) as is sometimes done in languages with dynamic or weak type systems:

* Encoding types in names lowers the abstraction level of the program; in particular, it pre-
vents generic programming (which relies on a name being able to refer to entities of differ-
ent types).

» The compiler is better at keeping track of types than you are.

e If you want to change the type of a name (e.g., use a std::string to hold the name), you’ll
have to change every use of the name (or the type encoding becomes a lie).

* Any system of type abbreviations you can come up with will become overelaborate and
cryptic as the variety of types you use increases.

Choosing good names is an art.

Try to maintain a consistent naming style. For example, capitalize names of user-defined types
and start names of non-type entities with a lowercase letter (for example, Shape and current_token).
Also, use all capitals for macros (if you must use macros (§12.6); for example, HACK) and never for
non-macros (not even for non-macro constants). Use underscores to separate words in an identifier;
number_of_elements is more readable than numberOfElements. However, consistency is hard to
achieve because programs are typically composed of fragments from different sources and several
different reasonable styles are in use. Be consistent in your use of abbreviations and acronyms.
Note that the language and the standard library use lowercase for types; this can be seen as a hint
that they are part of the standard.

6.3.3.1 Keywords

The C++ keywords are:

C++ Keywords
alignas alignof and and_eq asm auto
bitand bitor bool break case catch
char char16_t char32_t class compl const
constexpr const_cast  continue decltype default delete
do double dynamic_cast else enum explicit
extern false float for friend goto
if inline int long mutable namespace
new noexcept not not_eq nullptr operator
or or_eq private protected public register
reinterpret_cast return short signed sizeof static
static_assert static_cast struct switch template this
thread_local throw true try typedef typeid
typename union unsigned using virtual void
volatile wchar_t while xor Xxor_eq

In addition, the word export is reserved for future use.
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6.3.4 Scope

A declaration introduces a name into a scope; that is, a name can be used only in a specific part of
the program text.

Local scope: A name declared in a function (Chapter 12) or lambda (§11.4) is called a local
name. Its scope extends from its point of declaration to the end of the block in which its de-
claration occurs. A block is a section of code delimited by a {} pair. Function and lambda
parameter names are considered local names in the outermost block of their function or
lambda.

Class scope: A name is called a member name (or a class member name) if it is defined in a
class outside any function, class (Chapter 16), enum class (§8.4.1), or other namespace. Its
scope extends from the opening { of the class declaration to the end of the class declaration.
Namespace scope: A name is called a namespace member name if it is defined in a name-
space (§14.3.1) outside any function, lambda (§11.4), class (Chapter 16), enum class
(§8.4.1), or other namespace. Its scope extends from the point of declaration to the end of
its namespace. A namespace name may also be accessible from other translation units
(§15.2).

Global scope: A name is called a global name if it is defined outside any function, class
(Chapter 16), enum class (§8.4.1), or namespace (§14.3.1). The scope of a global name
extends from the point of declaration to the end of the file in which its declaration occurs. A
global name may also be accessible from other translation units (§15.2). Technically, the
global namespace is considered a namespace, so a global name is an example of a name-
space member name.

Statement scope: A name is in a statement scope if it is defined within the () part of a for-,
while-, if-, or switch-statement. Its scope extends from its point of declaration to the end of
its statement. All names in statement scope are local names.

Function scope: A label (§9.6) is in scope from its point of declaration until the end of the
function.

A declaration of a name in a block can hide a declaration in an enclosing block or a global name.
That is, a name can be redefined to refer to a different entity within a block. After exit from the
block, the name resumes its previous meaning. For example:

int x; // global x
void f()
{
int x; /l local x hides global x
x=1; 1/ assign to local x
{
int x; /! hides first local x
X =2; // assign to second local x
}
x=3; 1/ assign to first local x
}

int+ p = &x; / take address of global x
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Hiding names is unavoidable when writing large programs. However, a human reader can easily
fail to notice that a name has been hidden (also known as shadowed). Because such errors are rela-
tively rare, they can be very difficult to find. Consequently, name hiding should be minimized.
Using names such as i and x for global variables or for local variables in a large function is asking
for trouble.

A hidden global name can be referred to using the scope resolution operator, ::. For example:

int x;

void 2()

{
int x =1; // hide global x
ux=2; // assign to global x
X=2; // assign to local x
/...

}

There is no way to use a hidden local name.

The scope of a name that is not a class member starts at its point of declaration, that is, after the
complete declarator and before the initializer. This implies that a name can be used even to specify
its own initial value. For example:

int x=97;

void f3()
{

}

A good compiler warns if a variable is used before it has been initialized.
It is possible to use a single name to refer to two different objects in a block without using the ::
operator. For example:

int x = x; /l perverse: initialize x with its own (uninitialized) value

intx=11;
void f4() /l perverse: use of two different objects both called x in a single scope
{
inty =x; // use global x: y = 11
int x =22;
y=X; /l use local x: y =22
}

Again, such subtleties are best avoided.
The names of function arguments are considered declared in the outermost block of a function.
For example:

void f5(int x)
{

}

int x; 1/l error
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This is an error because x is defined twice in the same scope.
Names introduced in a for-statement are local to that statement (in statement scope). This
allows us to use conventional names for loop variables repeatedly in a function. For example:

void f(vector<string>& v, list<int>& Ist)

{
for (const auto& x : v) cout << x << "\n';
for (auto x : Ist) cout << x << "\n';
for (inti = 0, i!=v.size(), ++i) cout << v[i] << "\n';
for (autoi:{1,2,3,4,5,6,7}) cout <<i<<'\n;
}

This contains no name clashes.
A declaration is not allowed as the only statement on the branch of an if-statement (§9.4.1).

6.3.5 Initialization

If an initializer is specified for an object, that initializer determines the initial value of an object.
An initializer can use one of four syntactic styles:

Xal {v};
X a2 = {v};
X a3 =v;
X ad(v);

Of these, only the first can be used in every context, and I strongly recommend its use. It is clearer
and less error-prone than the alternatives. However, the first form (used for a1) is new in C++11, so
the other three forms are what you find in older code. The two forms using = are what you use in
C. Old habits die hard, so I sometimes (inconsistently) use = when initializing a simple variable
with a simple value. For example:

int x1 =0;
charcl ='2';

However, anything much more complicated than that is better done using {}. Initialization using {},
list initialization, does not allow narrowing (§is0.8.5.4). That is:
* An integer cannot be converted to another integer that cannot hold its value. For example,
char to int is allowed, but not int to char.
* A floating-point value cannot be converted to another floating-point type that cannot hold its
value. For example, float to double is allowed, but not double to float.
¢ A floating-point value cannot be converted to an integer type.
e An integer value cannot be converted to a floating-point type.
For example:

void f(double val, int val2)

{
int x2 = val; /I if val==7.9, x2 becomes 7
char c2 = val2; /l if val2==1025, c2 becomes 1
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int x3 {val}; 1/ error: possible truncation

char c3 {val2}; 1/ error: possible narrowing

char c4 {24}; /Il OK: 24 can be represented exactly as a char

char c5 {264}; 1/ error (assuming 8-bit chars): 264 cannot be represented as a char
int x4 {2.0}; /l error: no double to int value conversion

/...

}

See §10.5 for the conversion rules for built-in types.

There is no advantage to using {} initialization, and one trap, when using auto to get the type
determined by the initializer. The trap is that if the initializer is a {}-list, we may not want its type
deduced (§6.3.6.2). For example:

auto z1 {99}; // z1 is an initializer_list<int>
auto z2=99; // z2isanint

So prefer = when using auto.

It is possible to define a class so that an object can be initialized by a list of values and alterna-
tively be constructed given a couple of arguments that are not simply values to be stored. The clas-
sical example is a vector of integers:

vector<int> v1 {99}; /l v1 is a vector of 1 element with the value 99
vector<int> v2(99); // v2 is a vector of 99 elements each with the default value 0

I use the explicit invocation of a constructor, (99), to get the second meaning. Most types do not
offer such confusing alternatives — even most vectors do not; for example:

vector<string> v1{"hello!"}; /l v1 is a vector of 1 element with the value "hello!"
vector<string> v2("hello!"); 1/ error: no vector constructor takes a string literal

So, prefer {} initialization over alternatives unless you have a strong reason not to.
The empty initializer list, {}, is used to indicate that a default value is desired. For example:

int x4 {}; /] x4 becomes 0

double d4 {}; /l d4 becomes 0.0

chars p {}; /I p becomes nuliptr
vector<int> v4{};  // v4 becomes the empty vector
string s4 {}; // s4 becomes ""

Most types have a default value. For integral types, the default value is a suitable representation of
zero. For pointers, the default value is nullptr (§7.2.2). For user-defined types, the default value (if
any) is determined by the type’s constructors (§17.3.3).

For user-defined types, there can be a distinction between direct initialization (where implicit
conversions are allowed) and copy initialization (where they are not); see §16.2.6.

Initialization of particular kinds of objects is discussed where appropriate:

e Pointers: §7.2.2,8§7.3.2, §7.4

e References: §7.7.1 (Ivalues), §7.7.2 (rvalues)
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e Arrays: §7.3.1, §7.3.2

e Constants: §10.4

e C(lasses: §17.3.1 (not using constructors), §17.3.2 (using constructors), §17.3.3 (default),
§17.4 (member and base), §17.5 (copy and move)

e User-defined containers: §17.3.4

6.3.5.1 Missing Initializers

For many types, including all built-in types, it is possible to leave out the initializer. If you do that
— and that has unfortunately been common — the situation is more complicated. If you don’t like
the complications, just initialize consistently. The only really good case for an uninitialized vari-
able is a large input buffer. For example:

constexpr int max = 1024+:1024;
char buf[max];
some_stream.get(buf,max); // read at most max characters into buf

We could easily have initialized buf:
char buf[max] {}; / initialize every char to 0

By redundantly initializing, we would have suffered a performance hit which just might have been
significant. Avoid such low-level use of buffers where you can, and don’t leave such buffers unini-
tialized unless you know (e.g., from measurement) that the optimization compared to using an ini-
tialized array is significant.

If no initializer is specified, a global (§6.3.4), namespace (§14.3.1), local static (§12.1.8), or
static member (§16.2.12) (collectively called static objects) is initialized to {} of the appropriate
type. For example:

int a; /l means “int af};” so that a becomes 0
double d; // means “double df};” so that d becomes 0.0

Local variables and objects created on the free store (sometimes called dynamic objects or heap
objects; §11.2) are not initialized by default unless they are of user-defined types with a default
constructor (§17.3.3). For example:

void f()

{
int x; // x does not have a well-defined value
char buf[1024]; /1 buffi] does not have a well-defined value
intx p {new int}; /l *p does not have a well-defined value
charx q {new char[1024]}; // qli] does not have a well-defined value
string s; /I s==""because of string’s default constructor
vector<char> v; /I v=={} because of vector’s default constructor
string+ ps {new string}; /l *ps is "" because of string’s default constructor
/...
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If you want initialization of local variables of built-in type or objects of built-in type created with
new, use {}. For example:

void ff()

{
int x {}; /I x becomes 0
char buf[1024]{}; /! buffi] becomes 0 for all i
int+ p {new int{10}}; /I *p becomes 10

char: q {new char[1024]{}};  // qg[i] becomes O for all i

...
}

A member of an array or a class is default initialized if the array or structure is.

6.3.5.2 Initializer Lists

So far, we have considered the cases of no initializer and one initializer value. More complicated
objects can require more than one value as an initializer. This is primarily handled by initializer
lists delimited by { and }. For example:

inta[]={1,2}; Il array initializer

struct S { int x, string s };

S s={1, "Helios" }; // struct initializer
complex<double>z = { 0, pi }; /l use constructor

vector<double>v ={0.0, 1.1, 2.2, 3.3 }; // use list constructor

For C-style initialization of arrays, see §7.3.1. For C-style structures, see §8.2. For user-defined
types with constructors, see §2.3.2 or §16.2.5. For initializer-list constructors, see §17.3.4.

In the cases above, the = is redundant. However, some prefer to add it to emphasize that a set of
values are used to initialize a set of member variables.

In some cases, function-style argument lists can also be used (§2.3, §16.2.5). For example:

complex<double> z(0,pi); // use constructor
vector<double> v(10,3.3); 1/l use constructor: v gets 10 elements initialized to 3.3

In a declaration, an empty pair of parentheses, (), always means ‘“‘function” (§12.1). So, if you
want to be explicit about ““‘use default initialization” you need {}. For example:

complex<double> z1(1,2); 1/ function-style initializer (initialization by constructor)
complex<double> f1(); // function declaration

complex<double> z2 {1,2};  // initialization by constructor to {1,2}
complex<double> 2 {}; // initialization by constructor to the default value {0,0}

Note that initialization using the {} notation does not narrow (§6.3.5).
When using auto, a {}-list has its type deduced to std::initializer_list<T>. For example:
auto x1 {1,2,3,4}; /Il x1 is an initializer_list<int>

auto x2 {1.0, 2.25, 3.5 }; // x2 is an initializer_list of<double>
auto x3 {1.0,2}; 1/l error: cannot deduce the type of {1.0,2} (§6.3.6.2)
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6.3.6 Deducing a Type: auto and decltype()

The language provides two mechanisms for deducing a type from an expression:
* auto for deducing a type of an object from its initializer; the type can be the type of a vari-
able, a const, or a constexpr.
* decltype(expr) for deducing the type of something that is not a simple initializer, such as the
return type for a function or the type of a class member.
The deduction done here is very simple: auto and decltype() simply report the type of an expression
already known to the compiler.

6.3.6.1 The auto Type Specifier

When a declaration of a variable has an initializer, we don’t need to explicitly specify a type.
Instead, we can let the variable have the type of its initializer. Consider:

intal =123;
char a2 = 123;
auto a3 = 123; // the type of a3 is “int”

The type of the integer literal 123 is int, so a3 is an int. That is, auto is a placeholder for the type of
the initializer.

There is not much advantage in using auto instead of int for an expression as simple as 123. The
harder the type is to write and the harder the type is to know, the more useful auto becomes. For
example:

template<class T> void f1(vector<T>& arg)

{
for (vector<T>::iterator p = arg.begin(); p!=arg.end(); ++p)
xp=7;
for (auto p = arg.begin(); p!=arg.end(); ++p)
xp=7;
}

The loop using auto is the more convenient to write and the easier to read. Also, it is more resilient
to code changes. For example, if I changed arg to be a list, the loop using auto would still work cor-
rectly whereas the first loop would need to be rewritten. So, unless there is a good reason not to,
use auto in small scopes.

If a scope is large, mentioning a type explicitly can help localize errors. That is, compared to
using a specific type, using auto can delay the detection of type errors. For example:

void f(double d)
{

constexpr auto max = d+7;
int almax]; 1/ error: array bound not an integer
/...

}

If auto causes surprises, the best cure is typically to make functions smaller, which most often is a
good idea anyway (§12.1).
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We can decorate a deduced type with specifiers and modifiers (§6.3.1), such as const and & (ref-
erence; §7.7). For example:

void f(vector<int>& v)

{

for (const auto& x : v) { // xis a const int&
/...

}
}

Here, auto is determined by the element type of v, that is, int.
Note that the type of an expression is never a reference because references are implicitly deref-
erenced in expressions (§7.7). For example:

void g(int& v)
{

auto x = v; /l x is an int (not an int&)
auto& y=v; //yisanint&

6.3.6.2 auto and {}-lists

When we explicitly mention the type of an object we are initializing, we have two types to con-
sider: the type of the object and the type of the initializer. For example:

char v1 = 12345; /l 12345 is an int
intv2="c'; // 'c'is a char
Tv3=A();

By using the {}-initializer syntax for such definitions, we minimize the chances for unfortunate con-
versions:

char v1 {12345}; / error: narrowing

intv2 {'c'}; // fine: implicit char->int conversion

T v3 {f()}; /I works if and only if the type of f() can be implicitly converted toa T
When we use auto, there is only one type involved, the type of the initializer, and we can safely use
the = syntax:

auto v1 = 12345; // v1is anint

auto v2 ='c'; // v2is a char
auto v3 =f(); /] v3 is of some appropriate type

In fact, it can be an advantage to use the = syntax with auto, because the {}-list syntax might sur-
prise someone:

auto v1 {12345}; /l v1 is a list of int
auto v2 {'c'}; /I v2 is a list of char
auto v3 {f()}; /l v3 is a list of some appropriate type

This is logical. Consider:
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auto x0 {}; /l error: cannot deduce a type
auto x1 {1}; /! list of int with one element
auto x2 {1,2}; // list of int with two elements
auto x3 {1,2,3}; /! list of int with three elements

The type of a homogeneous list of elements of type T is taken to be of type initializer_list<T>
(§3.2.1.3, §11.3.3). In particular, the type of x1 is not deduced to be int. Had it been, what would
be the types of x2 and x3?

Consequently, I recommend using = rather than {} for objects specified auto whenever we don’t
mean “list.”

6.3.6.3 The decltype() Specifier

We can use auto when we have a suitable initializer. But sometimes, we want to have a type
deduced without defining an initialized variable. Then, we can use a declaration type specifier:
decltype(expr) is the declared type of expr. This is mostly useful in generic programming. Consider
writing a function that adds two matrices with potentially different element types. What should be
the type of the result of the addition? A matrix, of course, but what might its element type be? The
obvious answer is that the element type of the sum is the type of the sum of the elements. So, I can
declare:

template<class T, class U>
auto operator+(const Matrix<T>& a, const Matrix<U>& b) —> Matrix<decltype(T{}+U{})>;

I use the suffix return type syntax (§12.1) to be able to express the return type in terms of the argu-
ments: Matrix<decltype(T{}+U{})>. That is, the result is a Matrix with the element type being what
you get from adding a pair of elements from the argument Matrixes: T{}+U{}.

In the definition, I again need decltype() to express Matrix’s element type:

template<class T, class U>
auto operator+(const Matrix<T>& a, const Matrix<U>& b) —> Matrix<decltype(T{}+U{})>

{
Matrix<decltype(T{}+U{})> res;
for (int i=0; i!=a.rows(); ++i)
for (int j=0; j!=a.cols(); ++j)
res(i,j) += a(i,j) + b(i,j);
return res;

6.4 Objects and Values

We can allocate and use objects that do not have names (e.g., created using new), and it is possible
to assign to strange-looking expressions (e.g., *p[a+10]=7). Consequently, we need a name for
“something in memory.” This is the simplest and most fundamental notion of an object. That is,
an object is a contiguous region of storage; an [value is an expression that refers to an object. The
word “lvalue” was originally coined to mean ‘“‘something that can be on the left-hand side of an
assignment.” However, not every lvalue may be used on the left-hand side of an assignment; an
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Ivalue can refer to a constant (§7.7). An lvalue that has not been declared const is often called a
modifiable lvalue. This simple and low-level notion of an object should not be confused with the
notions of class object and object of polymorphic type (§3.2.2, §20.3.2).

6.4.1 Lvalues and Rvalues

To complement the notion of an lvalue, we have the notion of an rvalue. Roughly, rvalue means “a
value that is not an lvalue,” such as a temporary value (e.g., the value returned by a function).

If you need to be more technical (say, because you want to read the ISO C++ standard), you
need a more refined view of lvalue and rvalue. There are two properties that matter for an object
when it comes to addressing, copying, and moving:

* Has identity: The program has the name of, pointer to, or reference to the object so that it is
possible to determine if two objects are the same, whether the value of the object has
changed, etc.

*  Movable: The object may be moved from (i.e., we are allowed to move its value to another
location and leave the object in a valid but unspecified state, rather than copying; §17.5).

It turns out that three of the four possible combinations of those two properties are needed to pre-
cisely describe the C++ language rules (we have no need for objects that do not have identity and
cannot be moved). Using “m for movable” and *i for has identity,” we can represent this classifi-
cation of expressions graphically:

Ivalue {i&!m} xvalue {i&m} prvalue {l!i&m}

/

glvalue {i} rvalue {m}

So, a classical Ivalue is something that has identity and cannot be moved (because we could exam-
ine it after a move), and a classical rvalue is anything that we are allowed to move from. The other
alternatives are prvalue (‘‘pure rvalue”), glvalue (‘“‘generalized lvalue’), and xvalue (“x” for “‘ex-
traordinary” or “‘expert only”’; the suggestions for the meaning of this “x”” have been quite imagi-
native). For example:

void f(vector<string>& vs)

{

vector<string>& v2 = std::move(vs); / move vs to v2
/...

}

Here, std::move(vs) is an xvalue: it clearly has identity (we can refer to it as vs), but we have explic-
itly given permission for it to be moved from by calling std::move() (§3.3.2, §35.5.1).

For practical programming, thinking in terms of rvalue and Ivalue is usually sufficient. Note
that every expression is either an Ivalue or an rvalue, but not both.

6.4.2 Lifetimes of Objects

The lifetime of an object starts when its constructor completes and ends when its destructor starts
executing. Objects of types without a declared constructor, such as an int, can be considered to
have default constructors and destructors that do nothing.
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We can classify objects based on their lifetimes:

Automatic: Unless the programmer specifies otherwise (§12.1.8, §16.2.12), an object
declared in a function is created when its definition is encountered and destroyed when its
name goes out of scope. Such objects are sometimes called automatic objects. In a typical
implementation, automatic objects are allocated on the stack; each call of the function gets
its own stack frame to hold its automatic objects.

Static: Objects declared in global or namespace scope (§6.3.4) and statics declared in func-
tions (§12.1.8) or classes (§16.2.12) are created and initialized once (only) and “live” until
the program terminates (§15.4.3). Such objects are called static objects. A static object has
the same address throughout the life of a program execution. Static objects can cause seri-
ous problems in a multi-threaded program because they are shared among all threads and
typically require locking to avoid data races (§5.3.1, §42.3).

Free store: Using the new and delete operators, we can create objects whose lifetimes are
controlled directly (§11.2).

Temporary objects (e.g., intermediate results in a computation or an object used to hold a
value for a reference to const argument): their lifetime is determined by their use. If they
are bound to a reference, their lifetime is that of the reference; otherwise, they “live” until
the end of the full expression of which they are part. A full expression is an expression that
is not part of another expression. Typically, temporary objects are automatic.

Thread-local objects; that is, objects declared thread_local (§42.2.8): such objects are cre-
ated when their thread is and destroyed when their thread is.

Static and automatic are traditionally referred to as storage classes.
Array elements and nonstatic class members have their lifetimes determined by the object of
which they are part.

6.5 Type Aliases

Sometimes, we need a new name for a type. Possible reasons include:

The original name is too long, complicated, or ugly (in some programmer’s eyes).
A programming technique requires different types to have the same name in a context.
A specific type is mentioned in one place only to simplify maintenance.

For example:

using Pchar = char:; /l pointer to character
using PF = int(+)(double); // pointer to function taking a double and returning an int

Similar types can define the same name as a member alias:

template<class T>
class vector {

5

using value_type =T; /] every container has a value_type
/...
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template<class T>

class list {
using value_type = T; 1/l every container has a value_type
/...

b
For good and bad, type aliases are synonyms for other types rather than distinct types. That is, an
alias refers to the type for which it is an alias. For example:

Pchar p1 = nullptr; /I p1is a char*
char+ p3 = p1; /! fine

People who would like to have distinct types with identical semantics or identical representation
should look at enumerations (§8.4) and classes (Chapter 16).

An older syntax using the keyword typedef and placing the name being declared where it would
have been in a declaration of a variable can equivalently be used in many contexts. For example:

typedef int int32_t; // equivalent to “using int32_t = int;”
typedef short int16_t; /l equivalent to “using int16_t = short;”
typedef void(+PtoF)(int); /l equivalent to “using PtoF = void(*)(int);”

Aliases are used when we want to insulate our code from details of the underlying machine. The
name int32_t indicates that we want it to represent a 32-bit integer. Having written our code in
terms of int32_t, rather than ““plain int,” we can port our code to a machine with sizeof(int)==2 by
redefining the single occurrence of int32_t in our code to use a longer integer:

using int32_t = long;

The _t suffix is conventional for aliases (“‘typedefs’). The int16_t, int32_t, and other such aliases
can be found in <stdint> (§43.7). Note that naming a type after its representation rather than its pur-
pose is not necessarily a good idea (§6.3.3).

The using keyword can also be used to introduce a template alias (§23.6). For example:

template<typename T>
using Vector = std::vector<T, My_allocator<T>>;

We cannot apply type specifiers, such as unsigned, to an alias. For example:

using Char = char;
using Uchar = unsigned Char; /! error
using Uchar = unsigned char; // OK

6.6 Advice

] For the final word on language definition issues, see the ISO C++ standard; §6.1.
] Avoid unspecified and undefined behavior; §6.1.
[3] Isolate code that must depend on implementation-defined behavior; §6.1.
] Avoid unnecessary assumptions about the numeric value of characters; §6.2.3.2, §10.5.2.1.
] Remember that an integer starting with a 0 is octal; §6.2.4.1.
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(6]
(7]
(8]
(9]

[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
(20]
(21]
(22]

(23]

Avoid “magic constants’’; §6.2.4.1.

Avoid unnecessary assumptions about the size of integers; §6.2.8.

Avoid unnecessary assumptions about the range and precision of floating-point types; §6.2.8.
Prefer plain char over signed char and unsigned char; §6.2.3.1.

Beware of conversions between signed and unsigned types; §6.2.3.1.

Declare one name (only) per declaration; §6.3.2.

Keep common and local names short, and keep uncommon and nonlocal names longer;
§6.3.3.

Avoid similar-looking names; §6.3.3.

Name an object to reflect its meaning rather than its type; §6.3.3.

Maintain a consistent naming style; §6.3.3.

Avoid ALL_CAPS names; §6.3.3.

Keep scopes small; §6.3.4.

Don’t use the same name in both a scope and an enclosing scope; §6.3.4.

Prefer the {}-initializer syntax for declarations with a named type; §6.3.5.

Prefer the = syntax for the initialization in declarations using auto; §6.3.5.

Avoid uninitialized variables; §6.3.5.1.

Use an alias to define a meaningful name for a built-in type in cases in which the built-in type
used to represent a value might change; §6.5.

Use an alias to define synonyms for types; use enumerations and classes to define new types;
§6.5.
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Pointers, Arrays, and References

The sublime and the ridiculous

are often so nearly related that

it is difficult to class them separately.
— Thomas Paine

¢ Introduction

e Pointers
void+; nullptr
* Arrays

Array Initializers; String Literals
¢ Pointers into Arrays
Navigating Arrays; Multidimensional Arrays; Passing Arrays
¢ Pointers and const
* Pointers and Ownership
e References
Lvalue References; Rvalue References; References to References; Pointers and References
e Advice

7.1 Introduction

This chapter deals with the basic language mechanisms for referring to memory. Obviously, we
can refer to an object by name, but in C++ (most) objects “‘have identity.” That is, they reside at a
specific address in memory, and an object can be accessed if you know its address and its type. The
language constructs for holding and using addresses are pointers and references.
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7.2 Pointers

For a type T, T+ is the type “pointer to T.” That is, a variable of type T+ can hold the address of an
object of type T. For example:

charc="a;
char: p = &c; /l p holds the address of c; & is the address-of operator

The fundamental operation on a pointer is dereferencing, that is, referring to the object pointed to
by the pointer. This operation is also called indirection. The dereferencing operator is (prefix)
unary *. For example:

or graphically:

charc="a';
charx p = &c; // p holds the address of c; & is the address-of operator
char c2 = =p; // c2=="a’; *is the dereference operator

The object pointed to by p is ¢, and the value stored in ¢ is 'a', so the value of #p assigned to ¢2 is 'a'.

It is possible to perform some arithmetic operations on pointers to array elements (§7.4).

The implementation of pointers is intended to map directly to the addressing mechanisms of the
machine on which the program runs. Most machines can address a byte. Those that can’t tend to
have hardware to extract bytes from words. On the other hand, few machines can directly address
an individual bit. Consequently, the smallest object that can be independently allocated and
pointed to using a built-in pointer type is a char. Note that a bool occupies at least as much space as
a char (§6.2.8). To store smaller values more compactly, you can use the bitwise logical operations
(§11.1.1), bit-fields in structures (§8.2.7), or a bitset (§34.2.2).

The *, meaning “pointer to,” is used as a suffix for a type name. Unfortunately, pointers to
arrays and pointers to functions need a more complicated notation:

int+ pi; // pointer to int

char:: ppc; // pointer to pointer to char

int+ ap[15]; // array of 15 pointers to ints

int (+fp)(char+); /l pointer to function taking a char* argument; returns an int
int+ f(char=); // function taking a char* argument; returns a pointer to int

See §6.3.1 for an explanation of the declaration syntax and §iso.A for the complete grammar.
Pointers to functions can be useful; they are discussed in §12.5. Pointers to class members are
presented in §20.6.

7.2.1 void:

In low-level code, we occasionally need to store or pass along an address of a memory location
without actually knowing what type of object is stored there. A void: is used for that. You can read
void+ as ‘‘pointer to an object of unknown type.”
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A pointer to any type of object can be assigned to a variable of type void+, but a pointer to func-
tion (§12.5) or a pointer to member (§20.6) cannot. In addition, a void+ can be assigned to another
void+, void+s can be compared for equality and inequality, and a void+ can be explicitly converted to
another type. Other operations would be unsafe because the compiler cannot know what kind of
object is really pointed to. Consequently, other operations result in compile-time errors. To use a
void+, we must explicitly convert it to a pointer to a specific type. For example:

void f(int:+ pi)

{
void= pv = pi; // ok: implicit conversion of int* to void*
*PV; // error: can’t dereference void*
++pVv; /l error: can’t increment void* (the size of the object pointed to is unknown)
int+ pi2 = static_cast<int«>(pv); 1/l explicit conversion back to int*
doublex pd1 = pv; /l error
double: pd2 = pi; / error
double: pd3 = static_cast<double:>(pv); /l unsafe (§11.5.2)
}

In general, it is not safe to use a pointer that has been converted (‘“‘cast’) to a type that differs from
the type of the object pointed to. For example, a machine may assume that every double is allo-
cated on an 8-byte boundary. If so, strange behavior could arise if pi pointed to an int that wasn’t
allocated that way. This form of explicit type conversion is inherently unsafe and ugly. Conse-
quently, the notation used, static_cast (§11.5.2), was designed to be ugly and easy to find in code.

The primary use for void+ is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To use
such an object, we must use explicit type conversion.

Functions using void+ pointers typically exist at the very lowest level of the system, where real
hardware resources are manipulated. For example:

void+ my_alloc(size_t n); / allocate n bytes from my special heap

Occurrences of void+s at higher levels of the system should be viewed with great suspicion because
they are likely indicators of design errors. Where used for optimization, void+ can be hidden behind
a type-safe interface (§27.3.1).

Pointers to functions (§12.5) and pointers to members (§20.6) cannot be assigned to void+s.

7.2.2 nulliptr

The literal nullptr represents the null pointer, that is, a pointer that does not point to an object. It
can be assigned to any pointer type, but not to other built-in types:

int+ pi = nullptr;

double: pd = nullptr;

int i = nullptr; / error: i is not a pointer

There is just one nullptr, which can be used for every pointer type, rather than a null pointer for
each pointer type.
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Before nullptr was introduced, zero (0) was used as a notation for the null pointer. For example:
int+ x = 0; // x gets the value nullptr

No object is allocated with the address 0, and 0 (the all-zeros bit pattern) is the most common repre-
sentation of nullptr. Zero (0) is an int. However, the standard conversions (§10.5.2.3) allow 0 to be
used as a constant of pointer or pointer-to-member type.

It has been popular to define a macro NULL to represent the null pointer. For example:

int+ p = NULL; // using the macro NULL

However, there are differences in the definition of NULL in different implementations; for example,
NULL might be 0 or oL. In C, NULL is typically (void=)0, which makes it illegal in C++ (§7.2.1):

intx p = NULL; // error: can’t assign a void* to an int*

Using nullptr makes code more readable than alternatives and avoids potential confusion when a
function is overloaded to accept either a pointer or an integer (§12.3.1).

7.3 Arrays

For a type T, T[size] is the type “array of size elements of type T.” The elements are indexed from 0
to size-1. For example:

float v[3]; /l an array of three floats: v[0], v[1], v[2]
char+ a[32];  // an array of 32 pointers to char: a[0] .. a[31]

You can access an array using the subscript operator, [], or through a pointer (using operator * or
operator []; §7.4). For example:

void f()
{
int aa[10];
aa[6] = 9; // assign to aa’s 7th element

int x = aa[99]; // undefined behavior

}

Access out of the range of an array is undefined and usually disastrous. In particular, run-time
range checking is neither guaranteed nor common.

The number of elements of the array, the array bound, must be a constant expression (§10.4). If
you need variable bounds, use a vector (§4.4.1, §31.4). For example:

void f(int n)
{

int vi[n]; // error: array size not a constant expression
vector<int> v2(n); // OK: vector with n int elements

}

Multidimensional arrays are represented as arrays of arrays (§7.4.2).

An array is C++’s fundamental way of representing a sequence of objects in memory. If what
you want is a simple fixed-length sequence of objects of a given type in memory, an array is the
ideal solution. For every other need, an array has serious problems.
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An array can be allocated statically, on the stack, and on the free store (§6.4.2). For example:

int a1[10]; /l 10 ints in static storage

void f()

{
int a2 [20]; // 20 ints on the stack
int+p = new int[40]; /1 40 ints on the free store
/...

}

The C++ built-in array is an inherently low-level facility that should primarily be used inside the
implementation of higher-level, better-behaved, data structures, such as the standard-library vector
or array. There is no array assignment, and the name of an array implicitly converts to a pointer to
its first element at the slightest provocation (§7.4). In particular, avoid arrays in interfaces (e.g., as
function arguments; §7.4.3, §12.2.2) because the implicit conversion to pointer is the root cause of
many common errors in C code and C-style C++ code. If you allocate an array on the free store, be
sure to delete[] its pointer once only and only after its last use (§11.2.2). That’s most easily and
most reliably done by having the lifetime of the free-store array controlled by a resource handle
(e.g., string (§19.3, §36.3), vector (§13.6, §34.2), or unique_ptr (§34.3.1)). If you allocate an array
statically or on the stack, be sure never to delete[] it. Obviously, C programmers cannot follow
these pieces of advice because C lacks the ability to encapsulate arrays, but that doesn’t make the
advice bad in the context of C++.

One of the most widely used kinds of arrays is a zero-terminated array of char. That’s the way
C stores strings, so a zero-terminated array of char is often called a C-style string. C++ string liter-
als follow that convention (§7.3.2), and some standard-library functions (e.g., strepy() and stremp();
§43.4) rely on it. Often, a char: or a const char+ is assumed to point to a zero-terminated sequence
of characters.

7.3.1 Array Initializers
An array can be initialized by a list of values. For example:

intvi[1={1,2,3,4};
charv2[]={'a','b",'c",0};

When an array is declared without a specific size, but with an initializer list, the size is calculated
by counting the elements of the initializer list. Consequently, v1 and v2 are of type int[4] and
char[4], respectively. If a size is explicitly specified, it is an error to give surplus elements in an ini-
tializer list. For example:

char v3[2] ={'a','b', 0 }; // error: too many initializers
char v4[3]={'a','b', 0 }; 1/ OK

If the initializer supplies too few elements for an array, 0 is used for the rest. For example:
intv5[8]={1,2,3,4};
is equivalent to

intvs[1={1,2,3,4,0,0,0,0};
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There is no built-in copy operation for arrays. You cannot initialize one array with another (not
even of exactly the same type), and there is no array assignment:

int v6[8] = v5; // error: can’t copy an array (cannot assign an int* to an array)
v6 = v5; / error: no array assignment

Similarly, you can’t pass arrays by value. See also §7.4.

When you need assignment to a collection of objects, use a vector (§4.4.1, §13.6, §34.2), an
array (§8.2.4), or a valarray (§40.5) instead.

An array of characters can be conveniently initialized by a string literal (§7.3.2).

7.3.2 String Literals

A string literal is a character sequence enclosed within double quotes:
"this is a string"

A string literal contains one more character than it appears to have; it is terminated by the null char-
acter, \0', with the value 0. For example:

sizeof("Bohr")==5

The type of a string literal is “‘array of the appropriate number of const characters,” so "Bohr" is of
type const char[5].
In C and in older C++ code, you could assign a string literal to a non-const char::

void f()
{

char: p = "Plato"; // error, but accepted in pre-C++11-standard code
p[4] ='e'; // error: assignment to const

}

It would obviously be unsafe to accept that assignment. It was (and is) a source of subtle errors, so
please don’t grumble too much if some old code fails to compile for this reason. Having string lit-
erals immutable is not only obvious but also allows implementations to do significant optimizations
in the way string literals are stored and accessed.

If we want a string that we are guaranteed to be able to modify, we must place the characters in
anon-const array:

void ()
{

char p[] = "Zeno"; // pisan array of 5 char
p[0] ='R"; 1/ OK
}

A string literal is statically allocated so that it is safe to return one from a function. For example:

const char: error_message(int i)

{
/...

return "range error";
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The memory holding "range error" will not go away after a call of error_message().
Whether two identical string literals are allocated as one array or as two is implementation-
defined (§6.1). For example:

const char+ p = "Heraclitus";
const char: q = "Heraclitus";

void g()
{
if (p == q) cout << "one\n"; 1/ the result is implementation-defined
/...
}
Note that == compares addresses (pointer values) when applied to pointers, and not the values
pointed to.
The empty string is written as a pair of adjacent double quotes, "", and has the type const

char[1]. The one character of the empty string is the terminating "0'.

The backslash convention for representing nongraphic characters (§6.2.3.2) can also be used
within a string. This makes it possible to represent the double quote (") and the escape character
backslash (\) within a string. The most common such character by far is the newline character, "\n'.
For example:

cout<<"beep at end of message\a\n";

The escape character, \a', is the ASCII character BEL (also known as alert), which causes a sound
to be emitted.
It is not possible to have a “real” newline in a (nonraw) string literal:

"this is not a string
but a syntax error"

Long strings can be broken by whitespace to make the program text neater. For example:

char alpha[] = "abcdefghijkimnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

The compiler will concatenate adjacent strings, so alpha could equivalently have been initialized by
the single string

"abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

It is possible to have the null character in a string, but most programs will not suspect that there are
characters after it. For example, the string "Jens\000Munk" will be treated as "Jens" by standard-
library functions such as strepy() and strlen(); see §43.4.

7.3.2.1 Raw Character Strings

To represent a backslash (\) or a double quote (") in a string literal, we have to precede it with a
backslash. That’s logical and in most cases quite simple. However, if we need a lot of backslashes
and a lot of quotes in string literals, this simple technique becomes unmanageable. In particular, in
regular expressions a backslash is used both as an escape character and to introduce characters
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representing character classes (§37.1.1). This is a convention shared by many programming lan-
guages, so we can’t just change it. Therefore, when you write regular expressions for use with the
standard regex library (Chapter 37), the fact that a backslash is an escape character becomes a
notable source of errors. Consider how to write the pattern representing two words separated by a
backslash (\):

string s = "\Ww\w"; /l I hope I got that right

To prevent the frustration and errors caused by this clash of conventions, C++ provides raw string
literals. A raw string literal is a string literal where a backslash is just a backslash (and a double
quote is just a double quote) so that our example becomes:

string s = R"(\w\\w)"; /I I'm pretty sure | got that right

Raw string literals use the R"(ccc)" notation for a sequence of characters ccc. The initial R is there
to distinguish raw string literals from ordinary string literals. The parentheses are there to allow
(““‘unescaped’) double quotes. For example:

R"("quoted string")" // the string is "quoted string"

So, how do we get the character sequence )" into a raw string literal? Fortunately, that’s a rare
problem, but "( and )" is only the default delimiter pair. We can add delimiters before the ( and after
the ) in "(...)". For example:

R":x:=x("quoted string containing the usual terminator ("))"):"
/l "quoted string containing the usual terminator ("))"

The character sequence after the ) must be identical to the sequence before the (. This way we can
cope with (almost) arbitrarily complicated patterns.

Unless you work with regular expressions, raw string literals are probably just a curiosity (and
one more thing to learn), but regular expressions are useful and widely used. Consider a real-world
example:

2NN N (220N TN ) )1 // Are the five backslashes correct or not?

With examples like that, even experts easily become confused, and raw string literals provide a sig-
nificant service.
In contrast to nonraw string literals, a raw string literal can contain a newline. For example:

string counts {R"(1
22
333)"}

is equivalent to

string x {"1\n22\n333"};

7.3.2.2 Larger Character Sets

A string with the prefix L, such as L"angst", is a string of wide characters (§6.2.3). Its type is const
wchar_t[]. Similarly, a string with the prefix LR, such as LR"(angst)", is a raw string (§7.3.2.1) of
wide characters of type const wchar_t[]. Such a string is terminated by a L\0' character.
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There are six kinds of character literals supporting Unicode (Unicode literals). This sounds
excessive, but there are three major encodings of Unicode: UTF-8, UTF-16, and UTF-32. For each
of these three alternatives, both raw and “ordinary” strings are supported. All three UTF encod-
ings support all Unicode characters, so which you use depends on the system you need to fit into.
Essentially all Internet applications (e.g., browsers and email) rely on one or more of these encod-
ings.

UTEF-8 is a variable-width encoding: common characters fit into 1 byte, less frequently used
characters (by some estimate of use) into 2 bytes, and rarer characters into 3 or 4 bytes. In particu-
lar, the ASCII characters fit into 1 byte with the same encodings (integer values) in UTF-8 as in
ASCII. The various Latin alphabets, Greek, Cyrillic, Hebrew, Arabic, and more fit into 2 bytes.

A UTF-8 string is terminated by "\0', a UTF-16 string by u"\0', and a UTF-32 string by U"\0'".

We can represent an ordinary English character string in a variety of ways. Consider a file
name using a backslash as the separator:

"folder\\file" /I implementation character set string
R"(folder\file)" /I implementation character raw set string
u8"folder\\file" // UTF-8 string

u8R"(folder\file)"  // UTF-8 raw string

u"folder\Yfile" // UTF-16 string

uR"(folder\file)" // UTF-16 raw string

U"folder\\file" /Il UTF-32 string

UR"(folder\file)" // UTF-32 raw string

If printed, these strings will all look the same, but except for the “plain” and UTF-8 strings their
internal representations are likely to differ.

Obviously, the real purpose of Unicode strings is to be able to put Unicode characters into them.
For example:

u8"The official vowels in Danish are: a, e, i, 0, u, \uOOE6, \uOOF8, \uOOE5 and y."
Printing that string appropriately gives you

The official vowels in Danish are: a, e, i, 0, u, &, g, aand y.
The hexadecimal number after the \u is a Unicode code point (§is0.2.14.3) [Unicode,1996]. Such a
code point is independent of the encoding used and will in fact have different representations (as
bits in bytes) in different encodings. For example, u'0430' (Cyrillic lowercase letter “a”) is the
2-byte hexadecimal value DOBO in UTF-8, the 2-byte hexadecimal value 0403 in UTF-16, and the
4-byte hexadecimal value 00000403 in UTF-32. These hexadecimal values are referred to as univer-

sal character names.
The order of the us and Rs and their cases are significant: RU and Ur are not valid string prefixes.

7.4 Pointers into Arrays

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer to its
initial element. For example:
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intv[]={1,2,3,4};

intx p1 =v; // pointer to initial element (implicit conversion)
intx p2 = &v[0]; // pointer to initial element
intx p3 = v+4; // pointer to one-beyond-last element
or graphically:
p1 p2 p3

\

.
v [1]2]s]4]
|

Taking a pointer to the element one beyond the end of an array is guaranteed to work. This is
important for many algorithms (§4.5, §33.1). However, since such a pointer does not in fact point
to an element of the array, it may not be used for reading or writing. The result of taking the
address of the element before the initial element or beyond one-past-the-last element is undefined
and should be avoided. For example:

intx p4 = v-1; // before the beginning, undefined: don’t do it
intx p5 = v+7; // beyond the end, undefined: don’t do it

The implicit conversion of an array name to a pointer to the initial element of the array is exten-
sively used in function calls in C-style code. For example:

extern "C" int strlen(const char:); // from <string.h>

void ()
{

char v[] = "Annemarie";
charx p =v; // implicit conversion of char{] to char*

strlen(p);
strlen(v); /I implicit conversion of char{] to char*
vV =p; // error: cannot assign to array

}

The same value is passed to the standard-library function strlen() in both calls. The snag is that it is
impossible to avoid the implicit conversion. In other words, there is no way of declaring a function
so that the array v is copied when the function is called. Fortunately, there is no implicit or explicit
conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is lost
to the called function. However, the called function must somehow determine the size to perform a
meaningful operation. Like other C standard-library functions taking pointers to characters, strlen()
relies on zero to indicate end-of-string; strlen(p) returns the number of characters up to and not
including the terminating 0. This is all pretty low-level. The standard-library vector (§4.4.1, §13.6,
§31.4), array (§8.2.4, §34.2.1), and string (§4.2) don’t suffer from this problem. These library types
give their number of elements as their size() without having to count elements each time.
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7.4.1 Navigating Arrays

Efficient and elegant access to arrays (and similar data structures) is the key to many algorithms
(see §4.5, Chapter 32). Access can be achieved either through a pointer to an array plus an index or
through a pointer to an element. For example:

void fi(char v[])

{
for (int i = 0; V[i]!=0; ++i)
use(v[i]);
}
void fp(char v[])
{
for (char: p = v; =p!=0; ++p)
use(:p);
}

The prefix = operator dereferences a pointer so that =p is the character pointed to by p, and ++ incre-
ments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modern com-
pilers, identical code should be (and usually is) generated for both examples. Programmers can
choose between the versions on logical and aesthetic grounds.

Subscripting a built-in array is defined in terms of the pointer operations + and . For every
built-in array a and integer j within the range of a, we have:

a[j] == (&a[0]+]) == *(a+j) == *(j+a) == j[a]

It usually surprises people to find that a[j]==j[a]. For example, 3["Texas"]=="Texas"[3]=="a'. Such
cleverness has no place in production code. These equivalences are pretty low-level and do not
hold for standard-library containers, such as array and vector.

The result of applying the arithmetic operators +, —, ++, or —— to pointers depends on the type of
the object pointed to. When an arithmetic operator is applied to a pointer p of type T+, p is assumed
to point to an element of an array of objects of type T; p+1 points to the next element of that array,
and p-1 points to the previous element. This implies that the integer value of p+1 will be sizeof(T)
larger than the integer value of p. For example:

template<typename T>
int byte_diff(T* p, T+ q)
{
return reinterpret_cast<char:>(q)-reinterpret_cast<char:>(p);

}

void diff_test()

{
int vi[10];
short vs[10];
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cout << vi<<''<< &vi[1] << ' ' << &Vi[1]-&vi[0] << '' << byte_diff(&vi[0],&vi[1]) << \n';
cout << vs <<''<< &vs[1] <<'' << &vs[1]-&vs[0] << '' << byte_diff(&vs[0],&vs[1]) << \n';

}
This produced:

0x7fffaef0 Ox7fffaefd 1 4
0x7fffaedc Ox7fffaede 1 2

The pointer values were printed using the default hexadecimal notation. This shows that on my
implementation, sizeof(short) is 2 and sizeof(int) is 4.

Subtraction of pointers is defined only when both pointers point to elements of the same array
(although the language has no fast way of ensuring that is the case). When subtracting a pointer p
from another pointer g, g-p, the result is the number of array elements in the sequence [p:q) (an
integer). One can add an integer to a pointer or subtract an integer from a pointer; in both cases, the
result is a pointer value. If that value does not point to an element of the same array as the original
pointer or one beyond, the result of using that value is undefined. For example:

void f()

{
int v1[10];
int v2[10];

inti1 = &v1[5]-&v1[3]; /i1=2
int i2 = &v1[5]-&v2[3]; // result undefined

intx p1 =v2+2; /Il p1 = &v2[2]
int+ p2 = v2-2; /l *p2 undefined
}

Complicated pointer arithmetic is usually unnecessary and best avoided. Addition of pointers
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guaranteed to
be stored with the array. This implies that to traverse an array that does not contain a terminator the
way C-style strings do, we must somehow supply the number of elements. For example:

void fp(char v[], int size)

{
for (int i=0; i'=size; ++i)
use(vlil); // hope that v has at least size elements
for (intx : v)
use(x); // error: range-for does not work for pointers

constintN=7;
char v2[N];
for (int i=0; i!=N; ++i)
use(v2[i]);
for (int x : v2)
use(x); /l range-for works for arrays of known size
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This array concept is inherently low-level. Most advantages of the built-in array and few of the dis-
advantages can be obtained through the use of the standard-library container array (§8.2.4, §34.2.1).
Some C++ implementations offer optional range checking for arrays. However, such checking can
be quite expensive, so it is often used only as a development aid (rather than being included in pro-
duction code). If you are not using range checking for individual accesses, try to maintain a consis-
tent policy of accessing elements only in well-defined ranges. That is best done when arrays are
manipulated through the interface of a higher-level container type, such as vector, where it is harder
to get confused about the range of valid elements.

7.4.2 Multidimensional Arrays
Multidimensional arrays are represented as arrays of arrays; a 3-by-5 array is declared like this:
int ma[3][5]; // 3 arrays with 5 ints each

We can initialize ma like this:

void init_ma()

{
for (inti =0;i!=3; i++)
for (int j = 0; j!=5; j++)
mali][j] = 10x=i+j;
}
or graphically:

ma: ]oo|o1|02|o3|o4|10|11|12|13|14|20|21|22|23|24\

The array ma is simply 15 ints that we access as if it were 3 arrays of 5 ints. In particular, there is
no single object in memory that is the matrix ma — only the elements are stored. The dimensions 3
and 5 exist in the compiler source only. When we write code, it is our job to remember them some-
how and supply the dimensions where needed. For example, we might print ma like this:

void print_ma()

{
for (inti =0;i!=3; i++) {
for (int j = 0; j!=5; j++)
cout << mal[i][j] << '\t';
cout << '\n';
}
}

The comma notation used for array bounds in some languages cannot be used in C++ because the
comma (,) is a sequencing operator (§10.3.2). Fortunately, most mistakes are caught by the com-
piler. For example:

int bad[3,5]; /l error: comma not allowed in constant expression

int good[3][5]; /I 3 arrays with 5 ints each

int ouch = good[1,4]; // error: int initialized by int* (good[1,4] means good[4], which is an int*)
int nice = good[1][4];
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7.4.3 Passing Arrays

Arrays cannot directly be passed by value. Instead, an array is passed as a pointer to its first ele-
ment. For example:

void comp(double arg[10]) /l arg is a double*
{

for (int i=0; i!=10; ++i)

arg[i]+=99;

}
void f()
{

double a1[10];

double a2[5];

double a3[100];

comp(al);

comp(a2); // disaster!

comp(a3); /l uses only the first 10 elements
b

This code looks sane, but it is not. The code compiles, but the call comp(a2) will write beyond the
bounds of a2. Also, anyone who guessed that the array was passed by value will be disappointed:
the writes to arg[i] are writes directly to the elements of comp()’s argument, rather than to a copy.
The function could equivalently have been written as

void comp(double: arg)

{ for (int i=0; i!'=10; ++i)
arg[i]+=99;

}
Now the insanity is (hopefully) obvious. When used as a function argument, the first dimension of
an array is simply treated as a pointer. Any array bound specified is simply ignored. This implies
that if you want to pass a sequence of elements without losing size information, you should not
pass a built-in array. Instead, you can place the array inside a class as a member (as is done for
std::array) or define a class that acts as a handle (as is done for std::string and std::vector).

If you insist on using arrays directly, you will have to deal with bugs and confusion without get-
ting noticeable advantages in return. Consider defining a function to manipulate a two-dimensional
matrix. If the dimensions are known at compile time, there is no problem:

void print_m35(int m[3][5])
{
for (inti = 0; i!=3; i++) {
for (int j = 0; j!=5; j++)
cout << m[i][j] << "\t';
cout << '\n';
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A matrix represented as a multidimensional array is passed as a pointer (rather than copied; §7.4).
The first dimension of an array is irrelevant to finding the location of an element; it simply states
how many elements (here, 3) of the appropriate type (here, int[5]) are present. For example, look at
the layout of ma above and note that by knowing only that the second dimension is 5, we can locate
mal[i][5] for any i. The first dimension can therefore be passed as an argument:

void print_mi5(int m[][5], int dim1)

{
for (inti = 0; i!'=dim1; i++) {
for (int j = 0; j!=5; j++)
cout << m[i][j] << "\t';
cout << '\n';
}
}

When both dimensions need to be passed, the “obvious solution” does not work:

void print_mij(int m[][], int dim1, int dim2)  // doesn’t behave as most people would think

{
for (inti = 0; i!'=dim1; i++) {
for (int j = 0; j!=dim2; j++)
cout << m[i][j] << "\t'; / surprise!
cout << '\n';

}

Fortunately, the argument declaration m[][] is illegal because the second dimension of a multidimen-
sional array must be known in order to find the location of an element. However, the expression
m[il[j] is (correctly) interpreted as =(+(m+i)+j), although that is unlikely to be what the programmer
intended. A correct solution is:

void print_mij(int+ m, int dim1, int dim2)

{
for (inti = 0; i!'=dim1; i++) {
for (int j = 0; j!=dim2; j++)
cout << m[ixdim2+j] << "\t'; // obscure
cout << '\n';
}
}

The expression used for accessing the members in print_mij() is equivalent to the one the compiler
generates when it knows the last dimension.
To call this function, we pass a matrix as an ordinary pointer:

int test()
{
int v[3][5] = {
{0,1,2,3,4}, {10,11,12,13,14}, {20,21,22,23,24}
h
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print_m35(v);

print_mi5(v,3);

print_mij(&v[0][0],3,5);
}

Note the use of &v[0][0] for the last call; v[0] would do because it is equivalent, but v would be a
type error. This kind of subtle and messy code is best hidden. If you must deal directly with multi-
dimensional arrays, consider encapsulating the code relying on it. In that way, you might ease the
task of the next programmer to touch the code. Providing a multidimensional array type with a
proper subscripting operator saves most users from having to worry about the layout of the data in
the array (§29.2.2, §40.5.2).

The standard vector (§31.4) doesn’t suffer from these problems.

7.5 Pointers and const

C++ offers two related meanings of ‘“‘constant”:

* constexpr: Evaluate at compile time (§2.2.3, §10.4).

e const: Do not modify in this scope (§2.2.3).
Basically, constexpr’s role is to enable and ensure compile-time evaluation, whereas const’s pri-
mary role is to specify immutability in interfaces. This section is primarily concerned with the sec-
ond role: interface specification.

Many objects don’t have their values changed after initialization:

* Symbolic constants lead to more maintainable code than using literals directly in code.

* Many pointers are often read through but never written through.

* Most function parameters are read but not written to.
To express this notion of immutability after initialization, we can add const to the definition of an
object. For example:

const int model = 90; // model is a const
constintv[]={1,2,3,4}; // V[i] is a const
const int x; /l error: no initializer

Because an object declared const cannot be assigned to, it must be initialized.
Declaring something const ensures that its value will not change within its scope:

void f()
{

model =200; // error
v[2] = 3; 1/ error
}

Note that const modifies a type; it restricts the ways in which an object can be used, rather than
specifying how the constant is to be allocated. For example:

void g(const X p)

{
/l can’t modify *p here

}
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void h()

{
X val; // val can be modified here
g(&val);
/...

}

When using a pointer, two objects are involved: the pointer itself and the object pointed to. ““Pre-
fixing” a declaration of a pointer with const makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declarator
operator *const instead of plain . For example:

void f1(char: p)

{
char s[] = "Gorm";
const charx pc = s; // pointer to constant
pcl[3]1="9"; / error: pc points to constant
pc = p; // OK
char xconstcp = s; // constant pointer
cp[3] ="a’; // OK
cp=p; / error: cp is constant
const char =const cpc =s;  // const pointer to const
cpc[3] ='a'; // error: cpc points to constant
cpc = p; / error: cpc is constant

}

The declarator operator that makes a pointer constant is #const. There is no const: declarator oper-
ator, so a const appearing before the = is taken to be part of the base type. For example:

char +const cp; // const pointer to char
char const+ pc; // pointer to const char
const charx pc2; // pointer to const char

Some people find it helpful to read such declarations right-to-left, for example, “cp is a const
pointer to a char’” and ““pe2 is a pointer to a char const.”

An object that is a constant when accessed through one pointer may be variable when accessed
in other ways. This is particularly useful for function arguments. By declaring a pointer argument
const, the function is prohibited from modifying the object pointed to. For example:

const char: strchr(const char: p, char c); /! find first occurrence of c in p
char: strchr(char: p, char c); /! find first occurrence of c in p

The first version is used for strings where the elements mustn’t be modified and returns a pointer to
const that does not allow modification. The second version is used for mutable strings.

You can assign the address of a non-const variable to a pointer to constant because no harm can
come from that. However, the address of a constant cannot be assigned to an unrestricted pointer
because this would allow the object’s value to be changed. For example:
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void f4()
{

inta=1;
constintc=2;
const intx p1 = &c; // OK
const int+ p2 = &a; // OK
intx p3 = &c; /! error: initialization of int* with const int*
*p3 =7; // try to change the value of ¢
}

It is possible, but typically unwise, to explicitly remove the restrictions on a pointer to const by
explicit type conversion (§16.2.9, §11.5).

7.6 Pointers and Ownership

A resource is something that has to be acquired and later released (§5.2). Memory acquired by new
and released by delete (§11.2) and files opened by fopen() and closed by fclose() (§43.2) are exam-
ples of resources where the most direct handle to the resource is a pointer. This can be most con-
fusing because a pointer is easily passed around in a program, and there is nothing in the type sys-
tem that distinguishes a pointer that owns a resource from one that does not. Consider:

void confused(int: p)

{
/l delete p?

}

int global {7};

void f()

{
X pn = new int{7};
inti{7};
int q = &i;
confused(pn);
confused(q);
confused(&global);

}

If confused() deletes p the program will seriously misbehave for the second two calls because we
may not delete objects not allocated by new (§11.2). If confused() does not delete p the program
leaks (§11.2.1). In this case, obviously f() must manage the lifetime of the object it creates on the
free store, but in general keeping track of what needs to be deleted in a large program requires a
simple and consistent strategy.

It is usually a good idea to immediately place a pointer that represents ownership in a resource
handle class, such as vector, string, and unique_ptr. That way, we can assume that every pointer that
is not within a resource handle is not an owner and must not be deleted. Chapter 13 discusses
resource management in greater detail.
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7.7 References

A pointer allows us to pass potentially large amounts of data around at low cost: instead of copying
the data we simply pass its address as a pointer value. The type of the pointer determines what can
be done to the data through the pointer. Using a pointer differs from using the name of an object in
a few ways:

* We use a different syntax, for example, *p instead of obj and p->m rather than obj.m.

* We can make a pointer point to different objects at different times.

*  We must be more careful when using pointers than when using an object directly: a pointer

may be a nullptr or point to an object that wasn’t the one we expected.

These differences can be annoying; for example, some programmers find f(&x) ugly compared to
f(x). Worse, managing pointer variables with varying values and protecting code against the possi-
bility of nullptr can be a significant burden. Finally, when we want to overload an operator, say +,
we want to write x+y rather than &x+&y. The language mechanism addressing these problems is
called a reference. Like a pointer, a reference is an alias for an object, is usually implemented to
hold a machine address of an object, and does not impose performance overhead compared to
pointers, but it differs from a pointer in that:

* You access a reference with exactly the same syntax as the name of an object.

* A reference always refers to the object to which it was initialized.

e There is no “null reference,” and we may assume that a reference refers to an object

(§7.7.4).

A reference is an alternative name for an object, an alias. The main use of references is for specify-
ing arguments and return values for functions in general and for overloaded operators (Chapter 18)
in particular. For example:

template<class T>
class vector {
T* elem;
/...
public:
T& operator[](int i) { return elem[i]; } 1/ return reference to element
const T& operator[](int i) const { return elem[i]; } // return reference to const element

void push_back(const T& a); /l pass element to be added by reference
/...

b

void f(const vector<double>& v)

{
double d1 =v[1]; // copy the value of the double referred to by v.operator(](1) into d1
v[2] =7; /l place 7 in the double referred to by the result of v.operator[](2)
v.push_back(d1); // give push_back() a reference to d1 to work with

}

The idea of passing function arguments by reference is as old as high-level programming languages
(the first version of Fortran used that).
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To reflect the lvalue/rvalue and const/non-const distinctions, there are three kinds of references:
* Ivalue references: to refer to objects whose value we want to change
* const references: to refer to objects whose value we do not want to change (e.g., a constant)
* rvalue references: to refer to objects whose value we do not need to preserve after we have
used it (e.g., a temporary)
Collectively, they are called references. The first two are both called Ivalue references.

7.7.1 Lvalue References

In a type name, the notation X& means ‘“‘reference to X.” It is used for references to lvalues, so it is
often called an Ivalue reference. For example:

void f()
{
intvar=1;
int& r {var};  // rand var now refer to the same int
intx=r; // x becomes 1
r=2; /l var becomes 2
}

To ensure that a reference is a name for something (that is, that it is bound to an object), we must
initialize the reference. For example:

int var =1;

int& r1 {var}; /Il OK: r1 initialized

int& r2; 1/ error: initializer missing
extern int& r3; /I OK: r3 initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appear-
ances, no operator operates on a reference. For example:

void g()
{
int var = 0;
int& rr {var};
++IT; // var is incremented to 1
int+ pp = &rr; /l pp points to var
}

Here, ++rr does not increment the reference rr; rather, ++ is applied to the int to which rr refers, that
is, to var. Consequently, the value of a reference cannot be changed after initialization; it always
refers to the object it was initialized to denote. To get a pointer to the object denoted by a reference
rr, we can write &rr. Thus, we cannot have a pointer to a reference. Furthermore, we cannot define
an array of references. In that sense, a reference is not an object.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced each
time it is used. It doesn’t do much harm to think about references that way, as long as one remem-
bers that a reference isn’t an object that can be manipulated the way a pointer is:
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pp:

In some cases, the compiler can optimize away a reference so that there is no object representing
that reference at run time.

Initialization of a reference is trivial when the initializer is an lvalue (an object whose address
you can take; see §6.4). The initializer for a ““plain” T& must be an Ivalue of type T.

The initializer for a const T& need not be an lvalue or even of type T. In such cases:

[1] First, implicit type conversion to T is applied if necessary (see §10.5).

[2] Then, the resulting value is placed in a temporary variable of type T.

[3] Finally, this temporary variable is used as the value of the initializer.
Consider:

double& dr=1; // error: Ivalue needed
const double& cdr {1}; /Il OK

The interpretation of this last initialization might be:

double temp = double{1}; /! first create a temporary with the right value
const double& cdr {temp}; // then use the temporary as the initializer for cdr

A temporary created to hold a reference initializer persists until the end of its reference’s scope.
References to variables and references to constants are distinguished because introducing a tem-
porary for a variable would have been highly error-prone; an assignment to the variable would
become an assignment to the — soon-to-disappear — temporary. No such problem exists for refer-
ences to constants, and references to constants are often important as function arguments (§18.2.4).
A reference can be used to specify a function argument so that the function can change the
value of an object passed to it. For example:

void increment(int& aa)

{
++aa;
}
void f()
{
intx=1;
increment(x); IIx=2
}

The semantics of argument passing are defined to be those of initialization, so when called, incre-
ment’s argument aa became another name for x. To keep a program readable, it is often best to
avoid functions that modify their arguments. Instead, you can return a value from the function
explicitly:
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int next(int p) { return p+1; }

void g()
{
intx=1;
increment(x); IIx=2
X = next(x); I x=3
}

The increment(x) notation doesn’t give a clue to the reader that x’s value is being modified, the way
x=next(x) does. Consequently, “plain” reference arguments should be used only where the name of
the function gives a strong hint that the reference argument is modified.

References can also be used as return types. This is mostly used to define functions that can be
used on both the left-hand and right-hand sides of an assignment. A Map is a good example. For
example:

template<class K, class V>
class Map { /I a simple map class
public:
V& operator[](const K& v);  // return the value corresponding to the key v

pair<K,V>: begin() { return &elem[0]; }

pair<K,V>: end() { return &elem[0]+elem.size(); }
private:

vector<pair<K,V>> elem; 1/l {key,value} pairs

b

The standard-library map (§4.4.3, §31.4.3) is typically implemented as a red-black tree, but to avoid
distracting implementation details, I’ll just show an implementation based on linear search for a
key match:

template<class K, class V>
V& Map<K,V>::operator[](const K& k)

{
for (auto& x : elem)
if (k == x.first)
return x.second;
elem.push_back({k,V{}}); /l add pair at end (§4.4.2)
return elem.back().second; // return the (default) value of the new element
}

I pass the key argument, k, by reference because it might be of a type that is expensive to copy.
Similarly, I return the value by reference because it too might be of a type that is expensive to copy.
I use a const reference for k because I don’t want to modify it and because I might want to use a lit-
eral or a temporary object as an argument. I return the result by non-const reference because the
user of a Map might very well want to modify the found value. For example:
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int main() // count the number of occurrences of each word on input

{
Map<string,int> buf;
for (string s; cin>>s;) ++buf[s];
for (const auto& x : buf)
cout << x.first << ": " << x.second << '\n';
}

Each time around, the input loop reads one word from the standard input stream cin into the string s
(§4.3.2) and then updates the counter associated with it. Finally, the resulting table of different
words in the input, each with its number of occurrences, is printed. For example, given the input

aa bb bb aa aa bb aa aa
this program will produce

aa: 5
bb: 3

The range- for loop works for this because Map defined begin() and end(), just as is done for the
standard-library map.

7.7.2 Rvalue References

The basic idea of having more than one kind of reference is to support different uses of objects:
* A non-const lvalue reference refers to an object, to which the user of the reference can
write.
* A const lvalue reference refers to a constant, which is immutable from the point of view of
the user of the reference.
* An rvalue reference refers to a temporary object, which the user of the reference can (and
typically will) modify, assuming that the object will never be used again.
We want to know if a reference refers to a temporary, because if it does, we can sometimes turn an
expensive copy operation into a cheap move operation (§3.3.2, §17.1, §17.5.2). An object (such as
a string or a list) that is represented by a small descriptor pointing to a potentially huge amount of
information can be simply and cheaply moved if we know that the source isn’t going to be used
again. The classic example is a return value where the compiler knows that a local variable
returned will never again be used (§3.3.2).
An rvalue reference can bind to an rvalue, but not to an lvalue. In that, an rvalue reference is
exactly opposite to an lvalue reference. For example:

string var {"Cambridge"};

string ();
string& r1 {var}; // Ivalue reference, bind r1 to var (an Ivalue)
string& r2 {f()}; /!l lvalue reference, error: f() is an rvalue

string& r3 {"Princeton"}; // Ilvalue reference, error: cannot bind to temporary
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string&& rr1 {f()}; /l rvalue reference, fine: bind rr1 to rvalue (a temporary)
string&& rr2 {var}; /l rvalue reference, error: var is an lvalue
string&& rr3 {"Oxford"}; 1/ rr3 refers to a temporary holding "Oxford"

const string cr1& {"Harvard"};// OK: make temporary and bind to cr1

The && declarator operator means ‘‘rvalue reference.” We do not use const rvalue references; most
of the benefits from using rvalue references involve writing to the object to which it refers. Both a
const lvalue reference and an rvalue reference can bind to an rvalue. However, the purposes will be
fundamentally different:

e We use rvalue references to implement a “destructive read” for optimization of what would

otherwise have required a copy.

¢ We use a const Ivalue reference to prevent modification of an argument.
An object referred to by an rvalue reference is accessed exactly like an object referred to by an
Ivalue reference or an ordinary variable name. For example:

string f(string&& s)

{
if (s.size())
s[0] = toupper(s[0]);
return s;
}

Sometimes, a programmer knows that an object won’t be used again, even though the compiler
does not. Consider:

template<class T>
swap(T& a, T& b) // "old-style swap"
{

T tmp {a};// now we have two copies of a
a=b; / now we have two copies of b
b =tmp; // now we have two copies of tmp (aka a)

}

If T is a type for which it can be expensive to copy elements, such as string and vector, this swap()
becomes an expensive operation. Note something curious: we didn’t want any copies at all; we just
wanted to move the values of a, b, and tmp around. We can tell that to the compiler:

template<class T>
void swap(T& a, T& b)  // "perfect swap" (almost)

{

T tmp {static_cast<T&&>(a)}; // the initialization may write to a

a = static_cast<T&&>(b); // the assignment may write to b

b = static_cast<T&&>(tmp); // the assignment may write to tmp
}

The result value of static_cast<T&&>(x) is an rvalue of type T&& for x. An operation that is opti-
mized for rvalues can now use its optimization for x. In particular, if a type T has a move construc-
tor (§3.3.2, §17.5.2) or a move assignment, it will be used. Consider vector:
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template<class T> class vector {

...
vector(const vector& r); // copy constructor (copy r's representation)
vector(vector&& r); /l move constructor ("steal" representation from r)
h
vector<string> s;
vector<string> s2 {s}; /l s is an Ivalue, so use copy constructor
vector<string> s3 {s+"tail"); // s+"tail" is an rvalue so pick move constructor

The use of static_cast in swap() is a bit verbose and slightly prone to mistyping, so the standard
library provides a move() function: move(x) means static_cast<X&&>(x) where X is the type of x.
Given that, we can clean up the definition of swap() a bit:

template<class T>
void swap(T& a, T& b)  // "perfect swap" (almost)

{

T tmp {move(a)}; // move from a

a = move(b); // move from b

b = move(tmp); /I move from tmp
}

In contrast to the original swap(), this latest version need not make any copies; it will use move
operations whenever possible.

Since move(x) does not move x (it simply produces an rvalue reference to x), it would have been
better if move() had been called rval(), but by now move() has been used for years.

I deemed this swap() ‘‘almost perfect” because it will swap only lvalues. Consider:

void f(vector<int>& v)

{

swap(v,vector<int>{1,2,3});  // replace v’s elements with 1,2,3
/...

}

It is not uncommon to want to replace the contents of a container with some sort of default value,
but this particular swap() cannot do that. A solution is to augment it by two overloads:

template<class T> void swap(T&& a, T& b);
template<class T> void swap(T& a, T&& b)

Our example will be handled by that last version of swap(). The standard library takes a different
approach by defining shrink_to_fit() and clear() for vector, string, etc. (§31.3.3) to handle the most
common cases of rvalue arguments to swap():

void f(string& s, vector<int>& v)

{
s.shrink_to_fit(); /Il make s.capacity()==s.size()
swap(s,string{s}); /I make s.capacity()==s.size()
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v.clear(); /l make v empty
swap(v.vector<int>{}); // make v empty
v={}; /l make v empty

}

Rvalue references can also be used to provide perfect forwarding (§23.5.2.1, §35.5.1).

All standard-library containers provide move constructors and move assignment (§31.3.2).
Also, their operations that insert new elements, such as insert() and push_back(), have versions that
take rvalue references.

7.7.3 References to References

It you take a reference to a reference to a type, you get a reference to that type, rather than some
kind of special reference to reference type. But what kind of reference? Lvalue reference or rvalue
reference? Consider:

using rr_i = int&&;

using Ir_i = int&;

using rr_rr_i=rr_i&&; // “int && &&” is an int&&

using Ir_rr_i =rr_i&; /l “int && &” is an int&

using rr_Ir_i = Ir_i&&; /l “int & &&” is an int&

using Ir_Ir_i =Ir_i&; /l “int & &” is an int&
In other words, lvalue reference always wins. This makes sense: nothing we can do with types can
change the fact that an lvalue reference refers to an lvalue. This is sometimes known as reference
collapse.

The syntax does not allow

int && & r=1i;
Reference to reference can only happen as the result of an alias (§3.4.5, §6.5) or a template type
argument (§23.5.2.1).
7.7.4 Pointers and References

Pointers and references are two mechanisms for referring to an object from different places in a
program without copying. We can show this similarity graphically:

pp:

Each has its strengths and weaknesses.
If you need to change which object to refer to, use a pointer. You can use =, +=, —=, ++, and —
to change the value of a pointer variable (§11.1.4). For example:
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void fp(char: p)

{
while (=p)
cout << ++:p;
}
void fr(char& r)
{
while (r)
cout << ++r; // oops: increments the char referred to, not the reference
/I near-infinite loop!
}
void fr2(char&r)
{
char: p = &r; // get a pointer to the object referred to
while (=p)
cout << ++:p;
}

Conversely, if you want to be sure that a name always refers to the same object, use a reference.
For example:

template<class T> class Proxy { /I Proxy refers to the object with which it is initialized
T& m;

public:
Proxy(T& mm) :m{mm} {}
/...

5

template<class T> class Handle { // Handle refers to its current object
T m;
public:
Proxy(T: mm) :m{mm} {}
void rebind(T* mm) { m = mm; }
/...
b
If you want to use a user-defined (overloaded) operator (§18.1) on something that refers to an
object, use a reference:

Matrix operator+(const Matrix&, const Matrix&); // OK
Matrix operator—(const Matrix+, const Matrix:); // error: no user-defined type argument

Matrix y, z;

/...

Matrix x = y+z; // OK

Matrix x2 = &y-&z; // error and ugly

It is not possible to (re)define an operator for a pair of built-in types, such as pointers (§18.2.3).
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If you want a collection of something that refers to an object, you must use a pointer:

intx,y;

string& ail[] = {x, y}; / error: array of references
string+ a2[] = {&x, &y}; // OK

vector<string&> s1 = {x, y}; /I error: vector of references
vector<string:> s2 = {&x, &y}; /I OK

Once we leave the cases where C++ leaves no choice for the programmer, we enter the domain of
aesthetics. Ideally, we will make our choices so as to minimize the probability of error and in par-
ticular to maximize readability of code.

If you need a notion of “‘no value,” pointers offer nullptr. There is no equivalent “null refer-
ence,” so if you need a “‘no value,” using a pointer may be most appropriate. For example:

void fp(X: p)
{
if (p == nullptr) {
// no value
}
else {
/l use *p
}
}
void fr(X& r)  // common style
{
Il assume that r is valid and use it
}

If you really want to, you can construct and check for a *““null reference” for a particular type:

void fr2(X& r)

{
if (&r == &nullX) { // or maybe r==nullX
/l no value
}
else {
/I use r
}
}

Obviously, you need to have suitably defined nullX. The style is not idiomatic and I don’t recom-
mend it. A programmer is allowed to assume that a reference is valid. It is possible to create an
invalid reference, but you have to go out of your way to do so. For example:

charx ident(char * p) { return p; }

char& r {*ident(nullptr)}; // invalid code

This code is not valid C++ code. Don’t write such code even if your current implementation
doesn’t catch it.
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7.8

Advice

Keep use of pointers simple and straightforward; §7.4.1.

Avoid nontrivial pointer arithmetic; §7.4.

Take care not to write beyond the bounds of an array; §7.4.1.

Avoid multidimensional arrays; define suitable containers instead; §7.4.2.

Use nullptr rather than 0 or NULL; §7.2.2.

Use containers (e.g., vector, array, and valarray) rather than built-in (C-style) arrays; §7.4.1.
Use string rather than zero-terminated arrays of char; §7.4.

Use raw strings for string literals with complicated uses of backslash; §7.3.2.1.

Prefer const reference arguments to plain reference arguments; §7.7.3.

Use rvalue references (only) for forwarding and move semantics; §7.7.2.

Keep pointers that represent ownership inside handle classes; §7.6.

Avoid void+ except in low-level code; §7.2.1.

Use const pointers and const references to express immutability in interfaces; §7.5.

Prefer references to pointers as arguments, except where “no object” is a reasonable option;
§7.7.4.
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Structures, Unions, and Enumerations

Form a more perfect Union.
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¢ Introduction
e Structures
struct Layout; struct Names; Structures and Classes; Structures and Arrays; Type Equiv-
alence; Plain Old Data; Fields
e Unions
Unions and Classes; Anonymous unions
¢ Enumerations
enum classes; Plain enums; Unnamed enums
e Advice

8.1 Introduction

The key to effective use of C++ is the definition and use of user-defined types. This chapter intro-
duces the three most primitive variants of the notion of a user-defined type:

e A struct (a structure) is a sequence of elements (called members) of arbitrary types.

* A union is a struct that holds the value of just one of its elements at any one time.

* An enum (an enumeration) is a type with a set of named constants (called enumerators).

* enum class (a scoped enumeration) is an enum where the enumerators are within the scope

of the enumeration and no implicit conversions to other types are provided.

Variants of these kinds of simple types have existed since the earliest days of C++. They are pri-
marily focused on the representation of data and are the backbone of most C-style programming.
The notion of a struct as described here is a simple form of a class (§3.2, Chapter 16).
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8.2 Structures

An array is an aggregate of elements of the same type. In its simplest form, a struct is an aggregate
of elements of arbitrary types. For example:

struct Address {
const char: name; /1 "Jim Dandy"
int number; 1l 61
const char+ street; /l "South St"
const char: town; // "New Providence"
char state[2]; /I/'N"J'
const char: zip; /Il "07974"
5

This defines a type called Address consisting of the items you need in order to send mail to some-
one within the USA. Note the terminating semicolon.

Variables of type Address can be declared exactly like other variables, and the individual mem-
bers can be accessed using the . (dot) operator. For example:

void f()

{
Address jd;
jd.name = "Jim Dandy";
jd.number = 61;

}
Variables of struct types can be initialized using the {} notation (§6.3.5). For example:

Address jd = {
"Jim Dandy",
61, "South St",
"New Providence",
{'N',J'}, "07974"
b
Note that jd.state could not be initialized by the string "NJ". Strings are terminated by a zero char-
acter, "\0', so "NJ" has three characters — one more than will fit into jd.state. I deliberately use rather
low-level types for the members to illustrate how that can be done and what kinds of problems it
can cause.
Structures are often accessed through pointers using the —> (struct pointer dereference) operator.
For example:

void print_addr(Address: p)

{
cout << p->name << '\n'
<< p—>number << ' ' << p—>street << \n'
<< p—>town << '\n'
<< p—>state[0] << p—>state[1] << ' ' << p->zip << "\n';
}

When p is a pointer, p—>m is equivalent to (:p).m.



Section 8.2 Structures 203

Alternatively, a struct can be passed by reference and accessed using the . (struct member
access) operator:

void print_addr2(const Address& r)

{
cout << r.name << '\n'
<< r.number <<'' << r.street << '\n'
<< r.town << '\n'
<< r.state[0] << r.state[1] <<'' << r.zip << "\n';
}

Argument passing is discussed in §12.2.
Objects of structure types can be assigned, passed as function arguments, and returned as the
result from a function. For example:

Address current;

Address set_current(Address next)

{
address prev = current;
current = next;
return prev;

}

Other plausible operations, such as comparison (== and !=), are not available by default. However,
the user can define such operators (§3.2.1.1, Chapter 18).

8.2.1 struct Layout

An object of a struct holds its members in the order they are declared. For example, we might store
primitive equipment readout in a structure like this:

struct Readout {
char hour; /1 [0:23]
int value;
char seq; /I sequence mark [‘a"'Z']

5

You could imagine the members of a Readout object laid out in memory like this:

hour: value: seq:

L] [ |

Members are allocated in memory in declaration order, so the address of hour must be less than the
address of value. See also §8.2.6.

However, the size of an object of a struct is not necessarily the sum of the sizes of its members.
This is because many machines require objects of certain types to be allocated on architecture-
dependent boundaries or handle such objects much more efficiently if they are. For example, inte-
gers are often allocated on word boundaries. On such machines, objects are said to have to be
properly aligned (§6.2.9). This leads to ‘“holes” in the structures. A more realistic layout of a
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Readout on a machine with 4-byte int would be:

hour:

value:

seq:

,,,,,,,,,,,,,,,

In this case, as on many machines, sizeof(Readout) is 12, and not 6 as one would naively expect
from simply adding the sizes of the individual members.

You can minimize wasted space by simply ordering members by size (largest member first).
For example:

struct Readout {

int value;
char hour; /1 [0:23]
char seq; /I sequence mark ['a":'Z']

b

This would give us:

value:

(hour,seq):

Note that this still leaves a 2-byte “hole” (unused space) in a Readout and sizeof(Readout)==8. The
reason is that we need to maintain alignment when we put two objects next to each other, say, in an
array of Readouts. The size of an array of 10 Readout objects is 10+sizeof(Readout).

It is usually best to order members for readability and sort them by size only if there is a
demonstrated need to optimize.

Use of multiple access specifiers (i.e., public, private, or protected) can affect layout (§20.5).

8.2.2 struct Names

The name of a type becomes available for use immediately after it has been encountered and not
just after the complete declaration has been seen. For example:

struct Link {
Link: previous;
Link+ successor;

5

However, it is not possible to declare new objects of a struct until its complete declaration has been
seen. For example:

struct No_good {
No_good member; // error: recursive definition

b

This is an error because the compiler is not able to determine the size of No_good. To allow two (or
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more) structs to refer to each other, we can declare a name to be the name of a struct. For example:

struct List; // struct name declaration: List to be defined later

struct Link {
Link* pre;
Link+ suc;
List* member_of;
int data;

5

struct List {
Link: head;

b
Without the first declaration of List, use of the pointer type List+ in the declaration of Link would
have been a syntax error.

The name of a struct can be used before the type is defined as long as that use does not require
the name of a member or the size of the structure to be known. However, until the completion of
the declaration of a struct, that struct is an incomplete type. For example:

struct S; // “S” is the name of some type

extern S a;
S 1();

void g(S);
S# h(S+);

However, many such declarations cannot be used unless the type S is defined:

void k(S p)

{
S a; // error: S not defined; size needed to allocate
f(); /l error: S not defined; size needed to return value
g(a); /l error: S not defined; size needed to pass argument
p—>m=7; // error: S not defined; member name not known

Sxq=h(p); // ok: pointers can be allocated and passed
q->m=7; // error: S not defined; member name not known

}

For reasons that reach into the prehistory of C, it is possible to declare a struct and a non-struct with
the same name in the same scope. For example:

struct stat { /* ... */ };
int stat(char+ name, struct stat: buf);

In that case, the plain name (stat) is the name of the non-struct, and the struct must be referred to
with the prefix struct. Similarly, the keywords class, union (§8.3), and enum (§8.4) can be used as
prefixes for disambiguation. However, it is best not to overload names to make such explicit disam-
biguation necessary.



206 Structures, Unions, and Enumerations Chapter 8

8.2.3 Structures and Classes

A struct is simply a class where the members are public by default. So, a struct can have member
functions (§2.3.2, Chapter 16). In particular, a struct can have constructors. For example:

struct Points {
vector<Point> elem;// must contain at least one Point
Points(Point p0) { elem.push_back(p0);}
Points(Point p0, Point p1) { elem.push_back(p0); elem.push_back(p1); }

/...
b
Points x0; // error: no default constructor
Points x1{ {100,200} }; // one Point

Points x1{ {100,200}, {300,400} }; // two Points
You do not need to define a constructor simply to initialize members in order. For example:

struct Point {
intx,y;

5

Point p0; /I danger: uninitialized if in local scope (§6.3.5.1)

Point p1 {};  // default construction: {{},{}}; that is {0.0}

Point p2 {1}; // the second member is default constructed: {1,{}}; that is {1,0}
Point p3 {1,2}; // {1,2}

Constructors are needed if you need to reorder arguments, validate arguments, modify arguments,
establish invariants (§2.4.3.2, §13.4), etc. For example:

struct Address {
string name; /1 "Jim Dandy"
int number; /1 61
string street; // "South St"
string town; // "New Providence"
char state[2]; /s
char zip[5]; /1 07974

Address(const string n, int nu, const string& s, const string& t, const string& st, int z);
b
Here, I added a constructor to ensure that every member was initialized and to allow me to use a
string and an int for the postal code, rather than fiddling with individual characters. For example:

Address jd = {
"Jim Dandy",
61, "South St",
"New Providence",
"NJ", 7974 // (07974 would be octal; §6.2.4.1)

b
The Address constructor might be defined like this:
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Address::Address(const string& n, int nu, const string& s, const string& t, const string& st, int z)
// validate postal code
:name{n},
number{nu},
street{s},
town({t}

if (st.size()!=2)

error("State abbreviation should be two characters")
state = {st[0],st[1]}; // store postal code as characters
ostringstream ost; /I an output string stream, see §38.4.2
ost << z; 1/l extract characters from int
string zi {ost.str()};
switch (zi.size()) {
case 5:

zip = {zi[0], zi[1], zi[2], zi[3], zi[4]};

break;
case 4: // starts with '0’

zip ={'0', zi[0], zi[1], zi[2], zi[3]};

break;
default:

error("unexpected ZIP code format");

}

// ... check that the code makes sense ...

8.2.4 Structures and Arrays

Naturally, we can have arrays of structs and structs containing arrays. For example:

struct Point {
int x,y

b

Point points[3] {{1,2},{3,4},{5,6}};
int x2 = points[2].x;

struct Array {
Point elem[3];

b

Array points2 {{1,2},{3,4},{5,6}};

int y2 = points2.elem[2].y;
Placing a built-in array in a struct allows us to treat that array as an object: we can copy the struct
containing it in initialization (including argument passing and function return) and assignment. For

example:
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Array shift(Array a, Point p)

{
for (int i=0; i!'=3; ++i) {
a.elem[i].x += p.x;
a.elem[il.y += p.y;
}
return a;
}

Array ax = shift(points2,{10,20});

Chapter 8

The notation for Array is a bit primitive: Why i'=3? Why keep repeating .elem[i]? Why just ele-
ments of type Point? The standard library provides std::array (§34.2.1) as a more complete and ele-

gant development of the idea of a fixed-size array as a struct:

template<typename T, size_t N >
struct array { // simplified (see §34.2.1)
T elem[N];

T+ begin() noexcept { return elem; }

const T+ begin() const noexcept {return elem; }

T+ end() noexcept { return elem+N; }

const T+ end() const noexcept { return elem+N; }

constexpr size_t size() noexcept;

T& operator[](size_t n) { return elem[n]; }

const T& operator[](size_type n) const { return elem[n]; }

T + data() noexcept { return elem; }

const T * data() const noexcept { return elem; }

...
5

This array is a template to allow arbitrary numbers of elements of arbitrary types. It also deals
directly with the possibility of exceptions (§13.5.1.1) and const objects (§16.2.9.1). Using array,

Wwe can now write:

struct Point {
int x,y

b
using Array = array<Point,3>; // array of 3 Points

Array points {{1,2},{3,4},{5,6}};
int x2 = points[2].x;
int y2 = points[2].y;
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Array shift(Array a, Point p)

{
for (int i=0; i!'=a.size(); ++i) {
afi].x += p.x;
afil.y +=p.y;
}
return a;
}

Array ax = shift(points,{10,20});

The main advantages of std::array over a built-in array are that it is a proper object type (has assign-
ment, etc.) and does not implicitly convert to a pointer to an individual element:

ostream& operator<<(ostream& os, Point p)

{

cout << '{' << p[i].x << ',' << p[il.y << '}';
}
void print(Point a[l,int s) // must specify number of elements
{

for (int i=0; i!=s; ++i)

cout << a[i] << "\n';

}

template<typename T, int N>
void print(array<T,N>& a)

{
for (int i=0; i!'=a.size(); ++i)
cout << afi] << "\n';
}
Point pointi[] = {{1,2},{3,4},{5,6}}; /l 3 elements

array<Point,3> point2 = {{1,2},{3,4},{5,6}}; /Il 3 elements

void f()

{
print(point1,4); /l 4 is a bad error

print(point2);
}

The disadvantage of std::array compared to a built-in array is that we can’t deduce the number of
elements from the length of the initializer:

Point point1[] = {{1,2},{3,4},{5,6}}; /] 3 elements
array<Point,3> point2 = {{1,2},{3,4},{5,6}};  // 3 elements
array<Point> point3 = {{1,2},{3,4},{5,6}}; /I error: number of elements not given
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8.2.5 Type Equivalence
Two structs are different types even when they have the same members. For example:

struct S1 {int a; };
struct S2 { int a; };

S1 and S2 are two different types, so:

S1 x;
S2y=x; // error: type mismatch

A struct is also a different type from a type used as a member. For example:

S1 x;
inti=x; // error: type mismatch

Every struct must have a unique definition in a program (§15.2.3).

8.2.6 Plain Old Data

Sometimes, we want to treat an object as just “plain old data” (a contiguous sequence of bytes in
memory) and not worry about more advanced semantic notions, such as run-time polymorphism
(§3.2.3, §20.3.2), user-defined copy semantics (§3.3, §17.5), etc. Often, the reason for doing so is
to be able to move objects around in the most efficient way the hardware is capable of. For exam-
ple, copying a 100-element array using 100 calls of a copy constructor is unlikely to be as fast as
calling std::memcpy(), which typically simply uses a block-move machine instruction. Even if the
constructor is inlined, it could be hard for an optimizer to discover this optimization. Such “‘tricks”
are not uncommon, and are important, in implementations of containers, such as vector, and in low-
level I/O routines. They are unnecessary and should be avoided in higher-level code.

So, a POD (*““Plain Old Data’’) is an object that can be manipulated as ““just data” without wor-
rying about complications of class layouts or user-defined semantics for construction, copy, and
move. For example:

struct S0 { }; /l a POD

struct S1 {int a; }; /l a POD

struct S2 { int a; S2(int aa) : a(aa) { } }; /I not a POD (no default constructor)
struct S3 { int a; S3(int aa) : a(aa) { } S3() {} }; /I a POD (user-defined default constructor)
struct S4 { int a; S4(int aa) : a(aa) { } S4() = default; }; / a POD

struct S5 { virtual void f(); /* ... */ }; /l not a POD (has a virtual function)

struct S6 : S1{}; /l a POD

struct S7 : S0 { int b; }; /l a POD

struct S8 : S1 {int b; }; /l not a POD (data in both S1 and S8)

struct S9 : S0, S1 {}; // a POD

For us to manipulate an object as “just data” (as a POD), the object must
* not have a complicated layout (e.g., with a vptr; (§3.2.3, §20.3.2),
* not have nonstandard (user-defined) copy semantics, and
* have a trivial default constructor.
Obviously, we need to be precise about the definition of POD so that we only use such
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optimizations where they don’t break any language guarantees. Formally (§is0.3.9, §is0.9), a POD
object must be of

* astandard layout type, and

e atrivially copyable type,

* atype with a trivial default constructor.

A related concept is a trivial type, which is a type with

* atrivial default constructor and

* trivial copy and move operations
Informally, a default constructor is trivial if it does not need to do any work (use =default if you
need to define one §17.6.1).

A type has standard layout unless it

* has a non-static member or a base that is not standard layout,

¢ has a virtual function (§3.2.3, §20.3.2),

¢ has a virtual base (§21.3.5),

¢ has a member that is a reference (§7.7),

* has multiple access specifiers for non-static data members (§20.5), or

* prevents important layout optimizations

* by having non-static data members in more than one base class or in both the derived
class and a base, or
* by having a base class of the same type as the first non-static data member.
Basically, a standard layout type is one that has a layout with an obvious equivalent in C and is in
the union of what common C++ Application Binary Interfaces (ABIs) can handle.

A type is trivially copyable unless it has a nontrivial copy operation, move operation, or de-
structor (§3.2.1.2, §17.6). Informally, a copy operation is trivial if it can be implemented as a bit-
wise copy. So, what makes a copy, move, or destructor nontrivial?

* Itis user-defined.

e Its class has a virtual function.

e Its class has a virtual base.

* Its class has a base or a member that is not trivial.

An object of built-in type is trivially copyable, and has standard layout. Also, an array of trivially
copyable objects is trivially copyable and an array of standard layout objects has standard layout.
Consider an example:

template<typename T>
void mycopy(T+ to, const T from, int count);

I’d like to optimize the simple case where T is a POD. I could do that by only calling mycopy() for
PODs, but that’s error-prone: if I use mycopy() can I rely on a maintainer of the code to remember
never to call mycopy() for non-PODs? Realistically, I cannot. Alternatively, I could call std::copy(),
which is most likely implemented with the necessary optimization. Anyway, here is the general
and optimized code:
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template<typename T>
void mycopy(T+ to, const T from, int count)

{
if (is_pod<T>::value)
memcpy(to,from,count:sizeof(T));
else
for (int i=0; i!=count; ++i)
to[il=from[il;
}

The is_pod is a standard-library type property predicate (§35.4.1) defined in <type_traits> allowing
us to ask the question “Is T a POD?” in our code. The best thing about is_pod<Ts is that it saves
us from remembering the exact rules for what a POD is.

Note that adding or subtracting non-default constructors does not affect layout or performance
(that was not true in C++98).

If you feel an urge to become a language lawyer, study the layout and triviality concepts in the
standard (§is0.3.9, §is0.9) and try to think about their implications to programmers and compiler
writers. Doing so might cure you of the urge before it has consumed too much of your time.

8.2.7 Fields

It seems extravagant to use a whole byte (a char or a bool) to represent a binary variable — for exam-
ple, an on/off switch — but a char is the smallest object that can be independently allocated and
addressed in C++ (§7.2). It is possible, however, to bundle several such tiny variables together as
fields in a struct. A field is often called a bit-field. A member is defined to be a field by specifying
the number of bits it is to occupy. Unnamed fields are allowed. They do not affect the meaning of
the named fields, but they can be used to make the layout better in some machine-dependent way:

struct PPN { // R6000 Physical Page Number
unsigned int PFN : 22;  // Page Frame Number
int: 3; /l unused
unsigned int CCA : 3; // Cache Coherency Algorithm
bool nonreachable : 1;
bool dirty : 1;
bool valid : 1;
bool global : 1;
b

This example also illustrates the other main use of fields: to name parts of an externally imposed
layout. A field must be of an integral or enumeration type (§6.2.1). It is not possible to take the
address of a field. Apart from that, however, it can be used exactly like other variables. Note that a
bool field really can be represented by a single bit. In an operating system kernel or in a debugger,
the type PPN might be used like this:

void part_of VM_system(PPN: p)

{
/...
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if (p—>dirty) { // contents changed
// copy to disk
p—>dirty = 0;

}

Surprisingly, using fields to pack several variables into a single byte does not necessarily save
space. It saves data space, but the size of the code needed to manipulate these variables increases
on most machines. Programs have been known to shrink significantly when binary variables were
converted from bit-fields to characters! Furthermore, it is typically much faster to access a char or
an int than to access a field. Fields are simply a convenient shorthand for using bitwise logical
operators (§11.1.1) to extract information from and insert information into part of a word.

8.3 Unions

A union is a struct in which all members are allocated at the same address so that the union occu-
pies only as much space as its largest member. Naturally, a union can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

enum Type { str, num };

struct Entry {

charx name;
Type t;
charxs; // use s if t==str
inti; /l use i if t==num
b
void f(Entry= p)
{
if (p—>t == str)
cout << p->s;
...
}

The members s and i can never be used at the same time, so space is wasted. It can be easily recov-
ered by specifying that both should be members of a union, like this:

union Value {
char: s;
inti;
b
The language doesn’t keep track of which kind of value is held by a union, so the programmer must
do that:
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struct Entry {

char* name;

Type t;

Value v; // use v.s if t==str; use v.i if t==num
b
void f(Entry: p)
{

if (p—>t == str)

cout << p->v.s;

/...

}

To avoid errors, one can encapsulate a union so that the correspondence between a type field and
access to the union members can be guaranteed (§8.3.2).

Unions are sometimes misused for “type conversion.” This misuse is practiced mainly by pro-
grammers trained in languages that do not have explicit type conversion facilities, so that cheating
is necessary. For example, the following “‘converts” an int to an int+ simply by assuming bitwise
equivalence:

b}

union Fudge {

int i;
int+ p;
b
int+ cheat(int i)
{
Fudge a;
a.i=i;
return a.p; // bad use
}

This is not really a conversion at all. On some machines, an int and an int+ do not occupy the same
amount of space, while on others, no integer can have an odd address. Such use of a union is dan-
gerous and nonportable. If you need such an inherently ugly conversion, use an explicit type con-
version operator (§11.5.2) so that the reader can see what is going on. For example:

int+ cheat2(int i)

{
}

Here, at least the compiler has a chance to warn you if the sizes of objects are different and such
code stands out like the sore thumb it is.

Use of unions can be essential for compactness of data and through that for performance. How-
ever, most programs don’t improve much from the use of unions and unions are rather error-prone.
Consequently, I consider unions an overused feature; avoid them when you can.

return reinterpret_cast<int:>(i); /l obviously ugly and dangerous
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8.3.1 Unions and Classes

Many nontrivial unions have a member that is much larger than the most frequently used members.
Because the size of a union is at least as large as its largest member, space is wasted. This waste
can often be eliminated by using a set of derived classes (§3.2.2, Chapter 20) instead of a union.

Technically, a union is a kind of a struct (§8.2) which in turn is a kind of a class (Chapter 16).
However, many of the facilities provided for classes are not relevant for unions, so some restrictions
are imposed on unions:

[1] A union cannot have virtual functions.

[2] A union cannot have members of reference type.

[3] A union cannot have base classes.

[4] If a union has a member with a user-defined constructor, a copy operation, a move opera-
tion, or a destructor, then that special function is deleted (§3.3.4, §17.6.4) for that union;
that is, it cannot be used for an object of the union type.

[5] At most one member of a union can have an in-class initializer (§17.4.4).

[6] A union cannot be used as a base class.

These restrictions prevent many subtle errors and simplify the implementation of unions. The latter

is important because the use of unions is often an optimization and we won’t want ‘“‘hidden costs™

imposed to compromise that.

The rule that deletes constructors (etc.) from a union with a member that has a constructor (etc.)
keeps simple unions simple and forces the programmer to provide complicated operations if they
are needed. For example, since Entry has no member with constructors, destructors, or assign-
ments, we can create and copy Entrys freely. For example:

void f(Entry a)

{
Entry b = a;
b
Doing so with a more complicated union would cause implementation difficulties or errors:
union U {
int m1;
complex<double> m2; // complex has a constructor
string m3; // string has a constructor (maintaining a serious invariant)
h
To copy a U we would have to decide which copy operation to use. For example:
void f2(U x)
{
Uu; 1/ error: which default constructor?
Uu2=x; /l error: which copy constructor?
umi=1; // assign to int member
string s = u.m3; // disaster: read from string member
return; // error: which destructors are called for x, u, and u2?
}

It’s illegal to write one member and then read another, but people do that nevertheless (usually by
mistake). In this case, the string copy constructor would be called with an invalid argument. It is
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fortunate that U won’t compile. When needed, a user can define a class containing a union that
properly handles union members with constructors, destructors, and assignments (§8.3.2). If
desired, such a class can also prevent the error of writing one member and then reading another.

It is possible to specify an in-class initializer for at most one member. If so, this initializer will
be used for default initialization. For example:

union U2 {
int a;
const charx p {""};
5
U2 x1; /l default initialized to x1.p == ""
U2 x2 {7}; I x2a==7

8.3.2 Anonymous unions

To see how we can write a class that overcomes the problems with misuse of a union, consider a
variant of Entry (§8.3):

class Entry2 { // two alternative representations represented as a union
private:

enum class Tag { number, text };

Tag type; // discriminant

union { // representation
inti;
string s; // string has default constructor, copy operations, and destructor
b
public:
struct Bad_entry { }; 1/l used for exceptions

string name;

“Entry2();

Entry2& operator=(const Entry2&); /I necessary because of the string variant
Entry2(const Entry2&);

/...

int number() const;
string text() const;

void set_number(int n);
void set_text(const string&);
/...

b
I’m not a fan of get/set functions, but in this case we really need to perform a nontrivial user-speci-
fied action on each access. I chose to name the “get”” function after the value and use the set_ pre-
fix for the “set” function. That happens to be my favorite among the many naming conventions.
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The read-access functions can be defined like this:

int Entry2::number() const

{
if (type!=Tag::number) throw Bad_entry{};
return i;

h

string Entry2::text() const

{
if (type!=Tag::text) throw Bad_entry{};
return s;

b

These access functions check the type tag, and if it is the one that correctly corresponds to the
access we want, it returns a reference to the value; otherwise, it throws an exception. Such a union
is often called a tagged union or a discriminated union.

The write-access functions basically do the same checking of the type tag, but note how setting
a new value must take the previous value into account:

void Entry2::set_number(int n)

{
if (type==Tag::text) {
s.”string(); 1/l explicitly destroy string (§11.2.4)
type = Tag::number;
}
i=n;
}
void Entry2::set_text(const string& ss)
{
if (type==Tag::text)
s =ss;
else {
new(&s) string{ss}; 1/l placement new: explicitly construct string (§11.2.4)
type = Tag::text;
}
}

The use of a union forces us to use otherwise obscure and low-level language facilities (explicit
construction and destruction) to manage the lifetime of the union elements. This is another reason
to be wary of using unions.

Note that the union in the declaration of Entry2 is not named. That makes it an anonymous
union. An anonymous union is an object, not a type, and its members can be accessed without
mentioning an object name. That means that we can use members of an anonymous union exactly
as we use other members of a class — as long as we remember that union members really can be
used only one at a time.

Entry2 has a member of a type with a user-defined assignment operator, string, so Entry2’s
assignment operator is deleted (§3.3.4, §17.6.4). If we want to assign Entry2s, we have to define
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Entry2::operator=(). Assignment combines the complexities of reading and writing but is otherwise
logically similar to the access functions:

Entry2& Entry2::operator=(const Entry2& e) // necessary because of the string variant

{
if (type==Tag::text && e.type==Tag::text) {
s=e.s; // usual string assignment
return =*this;

if (type==Tag::text) s.”string(); / explicit destroy (§11.2.4)

switch (e.type) {
case Tag::number:
i=e.i
break;
case Tag::text:
new(&s)(e.s); // placement new: explicit construct (§11.2.4)

type = e.type;
}

return =*this;

}

Constructors and a move assignment can be defined similarly as needed. We need at least a con-
structor or two to establish the correspondence between the type tag and a value. The destructor
must handle the string case:

Entry2::"Entry2()

{
if (type==Tag::text) s."string(); // explicit destroy (§11.2.4)

}

8.4 Enumerations

An enumeration is a type that can hold a set of integer values specified by the user (§is0.7.2).
Some of an enumeration’s possible values are named and called enumerators. For example:

enum class Color { red, green, blue };

This defines an enumeration called Color with the enumerators red, green, and blue. ‘“An enumera-
tion” is colloquially shortened to ““an enum.”
There are two kinds of enumerations:
[1]  enum classes, for which the enumerator names (e.g., red) are local to the enum and their
values do not implicitly convert to other types
[2]  “Plain enums,” for which the enumerator names are in the same scope as the enum and
their values implicitly convert to integers
In general, prefer the enum classes because they cause fewer surprises.
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8.4.1 enum classes

An enum class is a scoped and strongly typed enumeration. For example:

enum class Traffic_light { red, yellow, green };
enum class Warning { green, yellow, orange, red };// fire alert levels

Warning a1 =7; // error: no int->Warning conversion
int a2 = green; 1/l error: green not in scope

int a3 = Warning::green; /l error: no Warning->int conversion
Warning a4 = Warning::green; 1/l OK

void f(Traffic_light x)

{
if(x==9){/...*} /l error: 9 is not a Traffic_light
if( x==red){/*...*/} / error: no red in scope
if (x == Warning::red) {/*...*/} // error: x is not a Warning
if (x == Traffic_light::red) { /... */ } 1/ OK
}

Note that the enumerators present in both enums do not clash because each is in the scope of its
own enum class.

An enumeration is represented by some integer type and each enumerator by some integer
value. We call the type used to represent an enumeration its underlying type. The underlying type
must be one of the signed or unsigned integer types (§6.2.4); the default is int. We could be explicit
about that:

enum class Warning : int { green, yellow, orange, red }; / sizeof(Warning)==sizeof(int)
If we considered that too wasteful of space, we could instead use a char:

enum class Warning : char { green, yellow, orange, red }; /I sizeof(Warning)==1
By default, enumerator values are assigned increasing from 0. Here, we get:

static_cast<int>(Warning::green)==0
static_cast<int>(Warning::yellow)==
static_cast<int>(Warning::orange)==
static_cast<int>(Warning::red)==3

Declaring a variable Warning instead of plain int can give both the user and the compiler a hint
as to the intended use. For example:

void f(Warning key)
{
switch (key) {
case Warning::green:
// do something
break;
case Warning::orange:
/I do something
break;
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case Warning::red:
// do something
break;

}

A human might notice that yellow was missing, and a compiler might issue a warning because only
three out of four Warning values are handled.

An enumerator can be initialized by a constant expression (§10.4) of integral type (§6.2.1). For
example:

enum class Printer_flags {
acknowledge=1,
paper_empty=2,
busy=4,
out_of_black=8,
out_of_color=16,
1/
b
The values for the Printer_flags enumerators are chosen so that they can be combined by bitwise
operations. An enum is a user-defined type, so we can define the | and & operators for it (§3.2.1.1,
Chapter 18). For example:

constexpr Printer_flags operatorl(Printer_flags a, Printer_flags b)

{

return static_cast<Printer_flags>(static_cast<int>(a))lstatic_cast<int>(b));
}
constexpr Printer_flags operator&(Printer_flags a, Printer_flags b)
{

return static_cast<Printer_flags>(static_cast<int>(a))&static_cast<int>(b));
}

The explicit conversions are necessary because a class enum does not support implicit conversions.
Given these definitions of | and & for Printer_flags, we can write:

void try_to_print(Printer_flags x)
{
if (x&Printer_flags::acknowledge) {
/...
}
else if (x&Printer_flags::busy) {
/...
}
else if (x&(Printer_flags::out_of_blackIPrinter_flags::out_of _color)) {
// either we are out of black or we are out of color
/...



Section 8.4.1 enum classes 221

I defined operatorl() and operator&() to be constexpr functions (§10.4, §12.1.6) because someone
might want to use those operators in constant expressions. For example:

void g(Printer_flags x)
{
switch (x) {
case Printer_flags::acknowledge:
/...
break;
case Printer_flags::busy:
/...
break;
case Printer_flags::out_of_black:
/...
break;
case Printer_flags::out_of_color:
/...
break;
case Printer_flags::out_of_black&Printer_flags::out_of color:
// we are out of black *and* out of color
/...
break;

}

/...
}

It is possible to declare an enum class without defining it (§6.3) until later. For example:

enum class Color_code : char; // declaration

void foobar(Color_code: p); // use of declaration

/...

enum class Color_code : char { 1/ definition

red, yellow, green, blue

b
A value of integral type may be explicitly converted to an enumeration type. The result of such a
conversion is undefined unless the value is within the range of the enumeration’s underlying type.
For example:

enum class Flag : char{ x=1, y=2, z=4, e=8 };

Flag f0 {}; // fO gets the default value 0

Flag f1 = 5; / type error: 5 is not of type Flag

Flag f2 = Flag{5}; // error: no narrowing conversion to an enum class
Flag f3 = static_cast<Flag>(5); // brute force

Flag f4 = static_cast<Flag>(999); // error: 999 is not a char value (maybe not caught)

The last assignments show why there is no implicit conversion from an integer to an enumeration;
most integer values do not have a representation in a particular enumeration.
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Each enumerator has an integer value. We can extract that value explicitly. For example:

int i = static_cast<int>(Flag::y); /l i becomes 2
char c = static_cast<char>(Flag::e); // ¢ becomes 8

The notion of a range of values for an enumeration differs from the enumeration notion in the Pas-
cal family of languages. However, bit-manipulation examples that require values outside the set of
enumerators to be well defined (e.g., the Printer_flags example) have a long history in C and C++.

The sizeof an enum class is the sizeof of its underlying type. In particular, if the underlying type
is not explicitly specified, the size is sizeof(int).

8.4.2 Plain enums

A “plain enum” is roughly what C++ offered before the enum classes were introduced, so you’ll
find them in lots of C and C++98-style code. The enumerators of a plain enum are exported into
the enum’s scope, and they implicitly convert to values of some integer type. Consider the exam-
ples from §8.4.1 with the ““class’ removed:

enum Traffic_light { red, yellow, green };
enum Warning { green, yellow, orange, red }; // fire alert levels

1/ error: two definitions of yellow (to the same value)
/] error: two definitions of red (to different values)

Warning al = 7; / error: no int->Warning conversion

int a2 = green; /I OK: green is in scope and converts to int
int a3 = Warning::green; /Il OK: Warning->int conversion

Warning a4 = Warning::green; /I OK

void f(Traffic_light x)

{
if(x==9){/..*} /Il OK (but Traffic_light doesn’t have a 9)
if(x==red) {/*...*} 1/ error: two reds in scope
if (x == Warning::red) {/*...*/} // OK (Ouch!)
if (x == Traffic_light::red) {/* ... */} // OK
}

We were “lucky” that defining red in two plain enumerations in a single scope saved us from hard-
to-spot errors. Consider ‘“cleaning up” the plain enums by disambiguating the enumerators (as is
easily done in a small program but can be done only with great difficulty in a large one):

enum Traffic_light { tl_red, tl_yellow, tl_green };
enum Warning { green, yellow, orange, red }; // fire alert levels
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void f(Traffic_light x)

{

if (x==red) {/*...*/} // OK (ouch!)

if (x == Warning::red) {/*...*/} // OK (ouch!)

if (x == Traffic_light::red) { /* ... */ } /l error: red is not a Traffic_light value
}

The compiler accepts the x==red, which is almost certainly a bug. The injection of names into an
enclosing scope (as enums, but not enum classes or classes, do) is namespace pollution and can be a
major problem in larger programs (Chapter 14).

You can specify the underlying type of a plain enumeration, just as you can for enum classes. If
you do, you can declare the enumerations without defining them until later. For example:

enum Traffic_light : char { tI_red, tl_yellow, tI_green }; // underlying type is char

enum Color_code : char; // declaration

void foobar(Color_code: p); // use of declaration

/...

enum Color_code : char { red, yellow, green, blue }; // definition

If you don’t specify the underlying type, you can’t declare the enum without defining it, and its
underlying type is determined by a relatively complicated algorithm: when all enumerators are non-
negative, the range of the enumeration is [O:2k-1] where 2 is the smallest power of 2 for which all
enumerators are within the range. If there are negative enumerators, the range is [-2k:2k-1]. This
defines the smallest bit-field capable of holding the enumerator values using the conventional two’s
complement representation. For example:

enum E1 { dark, light }; /l range 0:1
enumE2{a=3,b=9}; /l range 0:15
enum E3 { min = -10, max = 1000000 }; // range -1048576:1048575

The rule for explicit conversion of an integer to a plain enum is the same as for the class enum
except that when there is no explicit underlying type, the result of such a conversion is undefined
unless the value is within the range of the enumeration. For example:

enum Flag { x=1, y=2, z=4,e=8}; //range 0:15

Flag f0 {}; 1/ f0 gets the default value 0
Flag f1 = 5; 1/ type error: 5 is not of type Flag
Flag f2 = Flag{5}; // error: no explicit conversion from int to Flag

Flag f2 = static_cast<Flag>(5); /I OK: 5 is within the range of Flag
Flag f3 = static_cast<Flag>(zle); // OK: 12 is within the range of Flag
Flag f4 = static_cast<Flag>(99); // undefined: 99 is not within the range of Flag

Because there is an implicit conversion from a plain enum to its underlying type, we don’t need to
define | to make this example work: z and e are converted to int so that zle can be evaluated. The
sizeof an enumeration is the sizeof its underlying type. If the underlying type isn’t explicitly speci-
fied, it is some integral type that can hold its range and not larger than sizeof(int), unless an enumer-
ator cannot be represented as an int or as an unsigned int. For example, sizeof(e1) could be 1 or
maybe 4 but not 8 on a machine where sizeof(int)==4.
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8.4.3 Unnamed enums

A plain enum can be unnamed. For example:
enum { arrow_up=1, arrow_down, arrow_sideways };

We use that when all we need is a set of integer constants, rather than a type to use for variables.

8.5 Advice

[1] When compactness of data is important, lay out structure data members with larger members
before smaller ones; §8.2.1.
[2] Use bit-fields to represent hardware-imposed data layouts; §8.2.7.
[3] Don’t naively try to optimize memory consumption by packing several values into a single
byte; §8.2.7.
] Use unions to save space (represent alternatives) and never for type conversion; §8.3.
] Use enumerations to represent sets of named constants; §8.4.
[6] Prefer class enums over “plain’ enums to minimize surprises; §8.4.
] Define operations on enumerations for safe and simple use; §8.4.1.
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9.1 Introduction

C++ offers a conventional and flexible set of statements. Basically all that is either interesting or
complicated is found in expressions and declarations. Note that a declaration is a statement and
that an expression becomes a statement when you add a semicolon at its end.

Unlike an expression, a statement does not have a value. Instead, statements are used to specify
the order of execution. For example:

a = b+c; I/ expression statement
if (a==7) 1/ if-statement
b=9; // execute if and only if a==9

Logically, a=b+c is executed before the if, as everyone would expect. A compiler may reorder code
to improve performance as long as the result is identical to that of the simple order of execution.
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9.2 Statement Summary

Here is a summary of C++ statements:

statement:
declaration
expression,,, ;
{ statement-list,, }

try { statement-list,

opt

} handler-list

case constant-expression : statement
default : statement

break ;

continue ;

return expression,,, ;

goto identifier ;
identifier : statement

selection-statement
iteration-statement

selection-statement:
if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement

iteration-statement:
while ( condition ) statement
do statement while ( expression ) ;
for ( for-init-statement condition,,,, ; expression,,, ) statement
for ( for-init-declaration : expression ) statement

statement-list:

statement statement—listgp,

condition:
expression
type-specifier declarator = expression
type-specifier declarator { expression }

handler-list:
handler handler-list

opt
handler:
catch ( exception-declaration ) { statement-list,, }

A semicolon is by itself a statement, the empty statement.
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A (possibly empty) sequence of statements within *“‘curly braces™ (i.e., { and }) is called a block
or a compound statement. A name declared in a block goes out of scope at the end of its block
(§6.3.4).

A declaration is a statement and there is no assignment statement or procedure-call statement;
assignments and function calls are expressions.

A for-init-statement must be either a declaration or an expression-statement. Note that both end
with a semicolon.

A for-init-declaration must be the declaration of a single uninitialized variable.

The statements for handling exceptions, try-blocks, are described in §13.5.

9.3 Declarations as Statements

A declaration is a statement. Unless a variable is declared static, its initializer is executed whenever
the thread of control passes through the declaration (see also §6.4.2). The reason for allowing dec-
larations wherever a statement can be used (and a few other places; §9.4.3, §9.5.2) is to enable the
programmer to minimize the errors caused by uninitialized variables and to allow better locality in
code. There is rarely a reason to introduce a variable before there is a value for it to hold. For
example:

void f(vector<string>& v, int i, const char: p)

{
if (p==nullptr) return;
if (i<0 Il v.size()<=i)
error("bad index");
string s = v[i];
if (s == p) {
/...
}
/...
}

The ability to place declarations after executable code is essential for many constants and for sin-
gle-assignment styles of programming where a value of an object is not changed after initialization.
For user-defined types, postponing the definition of a variable until a suitable initializer is available
can also lead to better performance. For example:

void use()

{
string s1;
s1 ="The best is the enemy of the good.";
/...

}

This requests a default initialization (to the empty string) followed by an assignment. This can be
slower than a simple initialization to the desired value:

string s2 {"Voltaire"};

The most common reason to declare a variable without an initializer is that it requires a statement
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to give it its desired value. Input variables are among the few reasonable examples of that:

void input()
{
int buf[max];
int count = 0;
for (int i; cin>>i;) {
if (i<0) error("unexpected negative value");
if (count==max) error("buffer overflow");
buf[count++] = i;

}
...

}

I assume that error() does not return; if it does, this code may cause a buffer overflow. Often,
push_back() (§3.2.1.3, §13.6, §31.3.6) provides a better solution to such examples.

9.4 Selection Statements

A value can be tested by either an if-statement or a switch-statement:

if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement

A condition is either an expression or a declaration (§9.4.3).

9.4.1 if Statements

In an if-statement, the first (or only) statement is executed if the condition is true and the second
statement (if it is specified) is executed otherwise. If a condition evaluates to something different
from a Boolean, it is — if possible — implicitly converted to a bool. This implies that any arithmetic
or pointer expression can be used as a condition. For example, if x is an integer, then

if (x) /...
means

if (x 1=0)// ...
For a pointer p,

if (p) // ...

is a direct statement of the test “Does p point to a valid object (assuming proper initialization)?”’
and is equivalent to

if (p !=nullptr) // ...

Note that a “plain” enum can be implicitly converted to an integer and then to a bool, whereas an
enum class cannot (§8.4.1). For example:
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enumE1 {a,b};
enum class E2{a,b };

void f(E1 x, E2 y)

{
if (x) // OK
/...
if (y) // error: no conversion to bool
/...
if (y==E2::a) // OK
/...
}

The logical operators
&& I !

are most commonly used in conditions. The operators && and Il will not evaluate their second argu-
ment unless doing so is necessary. For example,

if (p && 1<p—->count) // ...

This tests 1<p->count only if p is not nullptr.
For choosing between two alternatives each of which produces a value, a conditional expression
(§11.1.3) is a more direct expression of intent than an if-statement. For example:

int max(int a, int b)

{

return (a>b)?a:b;  // return the larger of a and b

}

A name can only be used within the scope in which it is declared. In particular, it cannot be used
on another branch of an if-statement. For example:

void f2(int i)
{
if (i) {
int x =i+2;
++X;
/...
}
else {
++X; // error: x is not in scope
}
++X; / error: x is not in scope

}

A branch of an if-statement cannot be just a declaration. If we need to introduce a name in a
branch, it must be enclosed in a block (§9.2). For example:
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void f1(int i)
{
if (i)
int x = i+2; 1/l error: declaration of if-statement branch
}

9.4.2 switch Statements

A switch-statement selects among a set of alternatives (case-labels). The expression in the case
labels must be a constant expression of integral or enumeration type. A value may not be used
more than once for case-labels in a switch-statement. For example:

void f(int i)
{
switch (i) {
case 2.7: // error: floating point uses for case
/...
case 2:
/...
case 4-2:// error: 2 used twice in case labels
/...

b
A switch-statement can alternatively be written as a set of if-statements. For example:

switch (val) {

case 1:
f();
break;
case 2:
90);
break;
default:
h();
break;
}

This could be expressed as:

if (val ==1)
f();
else if (val == 2)

9();
else

h();

The meaning is the same, but the first (switch) version is preferred because the nature of the opera-
tion (testing a single value against a set of constants) is explicit. This makes the switch-statement
easier to read for nontrivial examples. It typically also leads to the generation of better code
because there is no reason to repeatedly check individual values. Instead, a jump table can be used.
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Beware that a case of a switch must be terminated somehow unless you want to carry on execut-
ing the next case. Consider:

switch (val) { /l beware
case 1:
cout << "case 1\n";
case 2:
cout << "case 2\n";
default:
cout << "default: case not found\n";

}
Invoked with val==1, the output will greatly surprise the uninitiated:

case 1
case 2
default: case not found

It is a good idea to comment the (rare) cases in which a fall-through is intentional so that an uncom-
mented fall-through can be assumed to be an error. For example:

switch (action) { // handle (action,value) pair
case do_and_print:
act(value);
/I no break: fall through to print
case print:
print(value);
break;
/...
}

A break is the most common way of terminating a case, but a return is often useful (§10.2.1).

When should a switch-statement have a default? There is no single answer that covers all situa-
tions. One use is for the default to handle the most common case. Another common use is the
exact opposite: the default: action is simply a way to catch errors; every valid alternative is covered
by the cases. However, there is one case where a default should not be used: if a switch is intended
to have one case for each enumerator of an enumeration. If so, leaving out the default gives the
compiler a chance to warn against a set of cases that almost but not quite match the set of enumera-
tors. For example, this is almost certainly an error:

enum class Vessel { cup, glass, goblet, chalice };

void problematic(Vessel v)

{
switch (v) {
case Vessel::cup: . break;
case Vessel::glass: o break;
case Vessel::goblet: rFo break;
}
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Such a mistake can easily occur when a new enumerator is added during maintenance.
Testing for an “impossible” enumerator value is best done separately.

9.4.2.1 Declarations in Cases

It is possible, and common, to declare variables within the block of a switch-statement. However, it
is not possible to bypass an initialization. For example:

void f(int i)
{
switch (i) {
case 0:
int x; // uninitialized
inty =3; /l error: declaration can be bypassed (explicitly initialized)
string s; // error: declaration can be bypassed (implicitly initialized)
case 1:
++X; 1/ error: use of uninitialized object
+ty;
s = "nasty!";
}
}

Here, if i==1, the thread of execution would bypass the initializations of y and s, so () will not com-
pile. Unfortunately, because an int needn’t be initialized, the declaration of x is not an error. How-
ever, its use is an error: we read an uninitialized variable. Unfortunately, compilers often give just a
warning for the use of an uninitialized variable and cannot reliably catch all such misuses. As
usual, avoid uninitialized variables (§6.3.5.1).

If we need a variable within a switch-statement, we can limit its scope by enclosing its declara-
tion and its use in a block. For an example, see prim() in §10.2.1.

9.4.3 Declarations in Conditions

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into the
smallest scope possible. In particular, it is usually best to delay the definition of a local variable
until one can give it an initial value. That way, one cannot get into trouble by using the variable
before its initial value is assigned.

One of the most elegant applications of these two principles is to declare a variable in a condi-
tion. Consider:

if (double d = prim(true)) {
left /=d;
break;

}

Here, d is declared and initialized and the value of d after initialization is tested as the value of the
condition. The scope of d extends from its point of declaration to the end of the statement that the
condition controls. For example, had there been an else-branch to the if-statement, d would be in
scope on both branches.
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The obvious and traditional alternative is to declare d before the condition. However, this opens
the scope (literally) for the use of d before its initialization or after its intended useful life:

double d;

/...

d2=d; // oops!

/...

if (d = prim(true)) {
left /= d;
break;

}

/...

d=2.0; // two unrelated uses of d

In addition to the logical benefits of declaring variables in conditions, doing so also yields the most
compact source code.
A declaration in a condition must declare and initialize a single variable or const.

9.5 Iteration Statements

A loop can be expressed as a for-, while-, or do-statement:

while ( condition ) statement

do statement while ( expression ) ;

for ( for-init-statement condition,, ; expression,,, ) statement
for ( for-declaration : expression ) statement

A for-init-statement must be either a declaration or an expression-statement. Note that both end
with a semicolon.

The statement of a for-statement (called the controlled statement or the loop body) is executed
repeatedly until the condition becomes false or the programmer breaks out of the loop some other
way (such as a break, a return, a throw, or a goto).

More complicated loops can be expressed as an algorithm plus a lambda expression (§11.4.2).

9.5.1 Range-for Statements

The simplest loop is a range-for-statement; it simply gives the programmer access to each element
of arange. For example:

int sum(vector<int>& v)
{
ints =0;
for (intx :v)
S+=X;
return s;
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The for (int x : v) can be read as ‘““for each element x in the range v’ or just “for each x in v.” The
elements of v are visited in order from the first to the last.

The scope of the variable naming the element (here, x) is the for-statement.

The expression after the colon must denote a sequence (a range); that is, it must yield a value

for which we can call v.begin() and v.end() or begin(v) and end(v) to obtain an iterators (§4.5):

[1]  the compiler first looks for members begin and end and tries to use those. If a begin or an
end is found that cannot be used as a range (e.g., because a member begin is a variable
rather than a function), the range-for is an error.

[2] Otherwise, the compiler looks for a begin/end member pair in the enclosing scope. If
none is found or if what is found cannot be used (e.g., because the begin did not take an
argument of the sequence’s type), the range-for is an error.

The compiler uses v and v+N as begin(v) and end(v) for a built-in array T v[N]. The <iterator> header
provides begin(c) and end(c) for built-in arrays and for all standard-library containers. For
sequences of our own design, we can define begin() and end() in the same way as it is done for stan-
dard-library containers (§4.4.5).

The controlled variable, x in the example, that refers to the current element is equivalent to #p

when using an equivalent for-statement:

int sum2(vector<int>& v)

{
ints =0;
for (auto p = begin(v); p!=end(v); ++p)
S+=%p;
return s;
}

If you need to modify an element in a range-for loop, the element variable should be a reference.
For example, we can increment each element of a vector like this:

void incr(vector<int>& v)

{
for (int& x : v)
++X;

}

References are also appropriate for elements that might be large, so that copying them to the ele-
ment value could be costly. For example:

template<class T> T accum(vector<T>& v)

{
T sum =0;
for (const T& x : v)
sum += X;
return sum;
}

Note that a range-for loop is a deliberately simple construct. For example, using it you can’t touch
two elements at the same time and can’t effectively traverse two ranges simultaneously. For that
we need a general for-statement.
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9.5.2 for Statements

There is also a more general for-statement allowing greater control of the iteration. The loop vari-
able, the termination condition, and the expression that updates the loop variable are explicitly pre-
sented “‘up front” on a single line. For example:

void f(int v[], int max)

{
for (int i = 0; i'=max; ++i)
V[i] = i*i;
}

This is equivalent to

void f(int v[], int max)

{
inti=0; 1/ introduce loop variable
while (i'=max) { /! test termination condition
v[i] = ixi; // execute the loop body
++i; /I increment loop variable
}
}

A variable can be declared in the initializer part of a for-statement. If that initializer is a declara-
tion, the variable (or variables) it introduced is in scope until the end of the for-statement.
It is not always obvious what is the right type to use for a controlled variable in a for loop, so
auto often comes in handy:
for (auto p = begin(c); c!=end(c); ++p) {
/... use iterator p for elements in container c ...

}

If the final value of an index needs to be known after exit from a for-loop, the index variable must
be declared outside the for-loop (e.g., see §9.6).

If no initialization is needed, the initializing statement can be empty.

If the expression that is supposed to increment the loop variable is omitted, we must update
some form of loop variable elsewhere, typically in the body of the loop. If the loop isn’t of the sim-
ple “introduce a loop variable, test the condition, update the loop variable’ variety, it is often better
expressed as a while-statement. However, consider this elegant variant:

for (string s; cin>>s;)

v.push_back(s);

Here, the reading and testing for termination and combined in cin>>s, so we don’t need an explicit
loop variable. On the other hand, the use of for, rather than while, allows us to limit the scope of the
“current element,” s, to the loop itself (the for-statement).

A for-statement is also useful for expressing a loop without an explicit termination condition:

for (5;) { // “forever”
/...

}
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However, many consider this idiom obscure and prefer to use:

while(true) {  // “forever”
/...

}

9.5.3 while Statements

A while-statement executes its controlled statement until its condition becomes false. For example:

template<class lter, class Value>
Iter find(lter first, Iter last, Value val)

{
while (first!=last && :first!=val)
++first;
return first;
}

I tend to prefer while-statements over for-statements when there isn’t an obvious loop variable or
where the update of a loop variable naturally comes in the middle of the loop body.
A for-statement (§9.5.2) is easily rewritten into an equivalent while-statement and vice versa.

9.5.4 do Statements

A do-statement is similar to a while-statement except that the condition comes after the body. For
example:

void print_backwards(char a[], int i) /I i must be positive

{
cout << '{';
do{
cout << a[--i];
} while (i);
cout << '};
}

This might be called like this: print_backwards(s,strlen(s)); but it is all too easy to make a horrible
mistake. For example, what if s was the empty string?

In my experience, the do-statement is a source of errors and confusion. The reason is that its
body is always executed once before the condition is evaluated. However, for the body to work cor-
rectly, something very much like the condition must hold even the first time through. More often
than I would have guessed, I have found that condition not to hold as expected either when the pro-
gram was first written and tested or later after the code preceding it has been modified. I also prefer
the condition “up front where I can see it.”” Consequently, I recommend avoiding do-statements.

9.5.5 Loop Exit

If the condition of an iteration statement (a for-, while-, or do-statement) is omitted, the loop will
not terminate unless the user explicitly exits it by a break, return (§12.1.4), goto (§9.6), throw
(§13.5), or some less obvious way such as a call of exit() (§15.4.3). A break ‘“‘breaks out of” the
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nearest enclosing switch-statement (§9.4.2) or iteration-statement. For example:

void f(vector<string>& v, string terminator)

{
char c;
string s;
while (cin>>c) {
/...
if (c == "\n') break;
/...
}
}

We use a break when we need to leave the loop body ““in the middle.” Unless it warps the logic of
a loop (e.g., requires the introduction of an extra varible), it is usually better to have the complete
exit condition as the condition of a while-statement or a for-statement.

Sometimes, we don’t want to exit the loop completely, we just want to get to the end of the loop
body. A continue skips the rest of the body of an iteration-statement. For example:

void find_prime(vector<string>& v)

{
for (int i = 0; i!=v.size(); ++i) {
if (prime(v[i]) continue;
return v[il;
}
}

After a continue, the increment part of the loop (if any) is executed, followed by the loop condition
(if any). So find_prime() could equivalently have been written as:

void find_prime(vector<string>& v)

{
for (int i = 0; i!=v.size(); ++i) {
if (!prime(v[i]) {
return v[i];
}
}
}

9.6 goto Statements

C++ possesses the infamous goto:

goto identifier ;
identifier : statement

The goto has few uses in general high-level programming, but it can be very useful when C++ code
is generated by a program rather than written directly by a person; for example, gotos can be used
in a parser generated from a grammar by a parser generator.
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The scope of a label is the function it is in (§6.3.4). This implies that you can use goto to jump
both into and out of blocks. The only restriction is that you cannot jump past an initializer or into
an exception handler (§13.5).

One of the few sensible uses of goto in ordinary code is to break out from a nested loop or
switch-statement (a break breaks out of only the innermost enclosing loop or switch-statement). For
example:

void do_something(int i, int j)
// do something to a two-dimensional matrix called mn

{
for (i = 0; i!=n; ++i)
for (j = 0; jl=m; ++j)
if (nm[i][j] == a)
goto found;
/l not found
/...
found:
I nm[iJfj] == a
}

Note that this goto just jumps forward to exit its loop. It does not introduce a new loop or enter a
new scope. That makes it the least troublesome and least confusing use of a goto.

9.7 Comments and Indentation

Judicious use of comments and consistent use of indentation can make the task of reading and
understanding a program much more pleasant. Several different consistent styles of indentation are
in use. I see no fundamental reason to prefer one over another (although, like most programmers, I
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The com-
piler does not understand the contents of a comment, so it has no way of ensuring that a comment

* is meaningful,

* describes the program, and

* isup to date.
Most programs contain comments that are incomprehensible, ambiguous, and just plain wrong.
Bad comments can be worse than no comments.

If something can be stated in the language itself, it should be, and not just mentioned in a com-
ment. This remark is aimed at comments such as these:

/] variable "v" must be initialized

// variable "v" must be used only by function "f()"
// call function "init()" before calling any other function in this file

// call function "cleanup()" at the end of your program
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/l don’t use function "weird()"

/ function "f(int ...)" takes two or three arguments

Such comments can typically be rendered unnecessary by proper use of C++.
Once something has been stated clearly in the language, it should not be mentioned a second
time in a comment. For example:

a=Db+c; // abecomes b+c
count++; // increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reader has
to look at, they often obscure the structure of the program, and they may be wrong. Note, however,
that such comments are used extensively for teaching purposes in programming language textbooks
such as this. This is one of the many ways a program in a textbook differs from a real program.

A good comment states what a piece of code is supposed to do (the intent of the code), whereas
the code (only) states what it does (in terms of how it does it). Preferably, a comment is expressed
at a suitably high level of abstraction so that it is easy for a human to understand without delving
into minute details.

My preference is for:

e A comment for each source file stating what the declarations in it have in common, refer-

ences to manuals, the name of the programmer, general hints for maintenance, etc.

¢ A comment for each class, template, and namespace

¢ A comment for each nontrivial function stating its purpose, the algorithm used (unless it is

obvious), and maybe something about the assumptions it makes about its environment

¢ A comment for each global and namespace variable and constant

¢ A few comments where the code is nonobvious and/or nonportable

e Very little else
For example:

/I tbl.c: Implementation of the symbol table.
/*
Gaussian elimination with partial pivoting.

See Ralston: "A first course ..." pg 411.
*

/I scan(p,n,c) requires that p points to an array of at least n elements
1/ sort(p,q) sorts the elements of the sequence [p:q) using < for comparison.

/I Revised to handle invalid dates. Bjarne Stroustrup, Feb 29 2013

A well-chosen and well-written set of comments is an essential part of a good program. Writing
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.
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Note that /+ +/ style comments do not nest. For example:

r*

remove expensive check

if (check(p,q)) error("bad p q") /* should never happen */
#f

This nesting should give an error for an unmatched final /.

9.8 Advice

[1] Don’t declare a variable until you have a value to initialize it with; §9.3, §9.4.3, §9.5.2.
[2] Prefer a switch-statement to an if-statement when there is a choice; §9.4.2.

[3] Prefer a range-for-statement to a for-statement when there is a choice; §9.5.1.

[4] Prefer a for-statement to a while-statement when there is an obvious loop variable; §9.5.2.
[5] Prefer a while-statement to a for-statement when there is no obvious loop variable; §9.5.3.
[6] Avoid do-statements; §9.5.

[71 Avoid goto; §9.6.

[8] Keep comments crisp; §9.7.

[9] Don’t say in comments what can be clearly stated in code; §9.7.
[10] State intent in comments; §9.7.
[11] Maintain a consistent indentation style; §9.7.
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Expressions

Programming is like sex:

It may give some concrete results,
but that is not why we do it.

— apologies to Richard Feynman

¢ Introduction

e A Desk Calculator
The Parser; Input; Low-Level Input; Error Handling; The Driver; Headers; Command-Line
Arguments; A Note on Style

e Operator Summary
Results; Order of Evaluation; Operator Precedence; Temporary Objects

¢ Constant Expressions
Symbolic Constants; consts in Constant Expressions; Literal Types; Reference Arguments;
Address Constant Expressions

¢ Implicit Type Conversion
Promotions; Conversions; Usual Arithmetic Conversions

e Advice

10.1 Introduction

This chapter discusses expressions in some detail. In C++, an assignment is an expression, a func-
tion call is an expression, the construction of an object is an expression, and so are many other
operations that go beyond conventional arithmetic expression evaluation. To give an impression of
how expressions are used and to show them in context, I first present a small complete program, a
simple “desk calculator.” Next, the complete set of operators is listed and their meaning for built-

in types is briefly outlined. The operators that require more extensive explanation are discussed in
Chapter 11.
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10.2 A Desk Calculator

Consider a simple desk calculator program that provides the four standard arithmetic operations as
infix operators on floating-point numbers. The user can also define variables. For example, given
the input

r=25
area=pixr=r

(pi is predefined) the calculator program will write

2.5
19.635

where 2.5 is the result of the first line of input and 19.635 is the result of the second.

The calculator consists of four main parts: a parser, an input function, a symbol table, and a
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the input
function handles input and lexical analysis, the symbol table holds permanent information, and the
driver handles initialization, output, and errors. We could add many features to this calculator to
make it more useful, but the code is long enough as it is, and most features would just add code
without providing additional insight into the use of C++.

10.2.1 The Parser

Here is a grammar for the language accepted by the calculator:

program:
end /l end is end-of-input
expr_list end

expr_list:
expression print / print is newline or semicolon
expression print expr_list

expression:
expression + term
expression - term
term

term:
term / primary
term = primary
primary

primary:
number /l number is a floating-point literal
name /l name is an identifier
name = expression
- primary
( expression)
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In other words, a program is a sequence of expressions separated by semicolons. The basic units of
an expression are numbers, names, and the operators *, /, +, — (both unary and binary), and =
(assignment). Names need not be declared before use.

I use a style of syntax analysis called recursive descent; it is a popular and straightforward top-
down technique. In a language such as C++, in which function calls are relatively cheap, it is also
efficient. For each production in the grammar, there is a function that calls other functions. Termi-
nal symbols (for example, end, number, +, and -) are recognized by a lexical analyzer and nonter-
minal symbols are recognized by the syntax analyzer functions, expr(), term(), and prim(). As soon
as both operands of a (sub)expression are known, the expression is evaluated; in a real compiler,
code could be generated at this point.

For input, the parser uses a Token_stream that encapsulates the reading of characters and their
composition into Tokens. That is, a Token_stream ‘“‘tokenizes’: it turns streams of characters, such
as 123.45, into Tokens. A Token is a {kind-of-token,value} pair, such as {number,123.45}, where the
123.45 has been turned into a floating point value. The main parts of the parser need only to know
the name of the Token_stream, ts, and how to get Tokens from it. To read the next Token, it calls
ts.get(). To get the most recently read Token (the “‘current token”), it calls ts.current(). In addition
to providing tokenizing, the Token_stream hides the actual source of the characters. We’ll see that
they can come directly from a user typing to cin, from a program command line, or from any other
input stream (§10.2.7).

The definition of Token looks like this:

enum class Kind : char {
name, nhumber, end,
plus="+', minus="-', mul="+', div=""", print=';', assign="=', Ip='(', rp=")’

5

struct Token {
Kind kind;
string string_value;
double number_value;
b
Representing each token by the integer value of its character is convenient and efficient and can be
a help to people using debuggers. This works as long as no character used as input has a value used
as an enumerator — and no current character set I know of has a printing character with a single-
digit integer value.
The interface to Token_stream looks like this:

class Token_stream {

public:
Token get(); /l read and return next token
const Token& current(); // most recently read token
/...

b

The implementation is presented in §10.2.2.
Each parser function takes a bool (§6.2.2) argument, called get, indicating whether the function
needs to call Token_stream::get() to get the next token. Each parser function evaluates ‘i

ER)

1ts
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expression and returns the value. The function expr() handles addition and subtraction. It consists
of a single loop that looks for terms to add or subtract:

double expr(bool get) /I add and subtract

{
double left = term(get);

for (53) { 1/l “forever”
switch (ts.current().kind) {
case Kind::plus:
left += term(true);
break;
case Kind::minus:
left —= term(true);
break;
default:
return left;

}

This function really does not do much itself. In a manner typical of higher-level functions in a
large program, it calls other functions to do the work.

The switch-statement (§2.2.4, §9.4.2) tests the value of its condition, which is supplied in paren-
theses after the switch keyword, against a set of constants. The break-statements are used to exit the
switch-statement. If the value tested does not match any case label, the default is chosen. The pro-
grammer need not provide a default.

Note that an expression such as 2-3+4 is evaluated as (2-3)+4, as specified in the grammar.

The curious notation for(;;) is a way to specify an infinite loop; you could pronounce it ‘““for-
ever” (§9.5); while(true) is an alternative. The switch-statement is executed repeatedly until some-
thing different from + and - is found, and then the return-statement in the default case is executed.

The operators += and -= are used to handle the addition and subtraction; left=left+term(true) and
left=left-term(true) could have been used without changing the meaning of the program. However,
left+=term(true) and left-=term(true) are not only shorter but also express the intended operation
directly. Each assignment operator is a separate lexical token, so a + = 1; is a syntax error because
of the space between the + and the =.

C++ provides assignment operators for the binary operators:

+ - = [/ % & I 7 << >

so that the following assignment operators are possible:

= = == #= [= %= &= I= = <<= >S>=

The % is the modulo, or remainder, operator; &, I, and " are the bitwise logical operators and, or, and
exclusive or; << and >> are the left shift and right shift operators; §10.3 summarizes the operators
and their meanings. For a binary operator @ applied to operands of built-in types, an expression
Xx@=y means x=x@y, except that x is evaluated once only.
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The function term() handles multiplication and division in the same way expr() handles addition
and subtraction:

double term(bool get) /I multiply and divide

{
double left = prim(get);

for (5;) {
switch (ts.current().kind) {
case Kind::mul:
left = prim(true);
break;
case Kind::div:
if (auto d = prim(true)) {
left /= d;
break;

}

return error("divide by 0");
default:

return left;

}

The result of dividing by zero is undefined and usually disastrous. We therefore test for 0 before
dividing and call error() if we detect a zero divisor. The function error() is described in §10.2.4.

The variable d is introduced into the program exactly where it is needed and initialized immedi-
ately. The scope of a name introduced in a condition is the statement controlled by that condition,
and the resulting value is the value of the condition (§9.4.3). Consequently, the division and
assignment left/=d are done if and only if d is nonzero.

The function prim() handling a primary is much like expr() and term(), except that because we are
getting lower in the call hierarchy a bit of real work is being done and no loop is necessary:

double prim(bool get) // handle primaries

{
if (get) ts.get(); / read next token

switch (ts.current().kind) {

case Kind::number: /! floating-point constant

{ double v = ts.current().number_value;
ts.get();
return v;

}

case Kind::name:

{ double& v = table[ts.current().string_value]; // find the corresponding
if (ts.get().kind == Kind::assign) v = expr(true); /l ’=" seen: assignment
return v;
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case Kind::minus: /I unary minus
return —prim(true);
case Kind::Ip:
{ auto e = expr(true);
if (ts.current().kind != Kind::rp) return error("')' expected");

ts.get(); / eat’)

return e;
}
default:

return error("primary expected");
}

}

When a Token that is a number (that is, an integer or floating-point literal) is seen, its value is placed
in its number_value. Similarly, when a Token that is a name (however defined; see §10.2.2 and
§10.2.3) is seen, its value is placed in its string_value.

Note that prim() always reads one more Token than it uses to analyze its primary expression.
The reason is that it must do that in some cases (e.g., to see if a name is assigned to), so for consis-
tency it must do it in all cases. In the cases where a parser function simply wants to move ahead to
the next Token, it doesn’t use the return value from ts.get(). That’s fine because we can get the
result from ts.current(). Had ignoring the return value of get() bothered me, I'd have either added a
read() function that just updated current() without returning a value or explicitly *“thrown away” the
result: void(ts.get()).

Before doing anything to a name, the calculator must first look ahead to see if it is being
assigned to or simply read. In both cases, the symbol table is consulted. The symbol table is a map
(§4.4.3, §31.4.3):

map<string,double> table;

That is, when table is indexed by a string, the resulting value is the double corresponding to the
string. For example, if the user enters

radius = 6378.388;
the calculator will reach case Kind::name and execute

double& v = table["radius"];
/... expr() calculates the value to be assigned ...
v = 6378.388;

The reference v is used to hold on to the double associated with radius while expr() calculates the
value 6378.388 from the input characters.

Chapter 14 and Chapter 15 discuss how to organize a program as a set of modules. However,
with one exception, the declarations for this calculator example can be ordered so that everything is
declared exactly once and before it is used. The exception is expr(), which calls term(), which calls
prim(), which in turn calls expr(). This loop of calls must be broken somehow. A declaration

double expr(bool);

before the definition of prim() will do nicely.
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10.2.2 Input

Reading input is often the messiest part of a program. To communicate with a person, the program
must cope with that person’s whims, conventions, and seemingly random errors. Trying to force
the person to behave in a manner more suitable for the machine is often (rightly) considered offen-
sive. The task of a low-level input routine is to read characters and compose higher-level tokens
from them. These tokens are then the units of input for higher-level routines. Here, low-level input
is done by ts.get(). Writing a low-level input routine need not be an everyday task. Many systems
provide standard functions for this.
First we need to see the complete definition of Token_stream:

class Token_stream {

public:
Token_stream(istream& s) : ip{&s}, owns{false} { }
Token_stream(istream: p) : ip{p}, owns{true} { }

“Token_stream() { close(); }

Token get(); // read and return next token
Token& current(); // most recently read token

void set_input(istream& s) { close(); ip = &s; owns=false; }
void set_input(istream: p) { close(); ip = p; owns = true; }

private:
void close() { if (owns) delete ip; }

istream+ ip; /l pointer to an input stream
bool owns; // does the Token_stream own the istream?
Token ct {Kind::end} ; // current token

b
We initialize a Token_stream with an input stream (§4.3.2, Chapter 38) from which it gets its char-
acters. The Token_stream implements the convention that it owns (and eventually deletes; §3.2.1.2,
§11.2) an istream passed as a pointer, but not an istream passed as a reference. This may be a bit
elaborate for this simple program, but it is a useful and general technique for classes that hold a
pointer to a resource requiring destruction.

A Token_stream holds three values: a pointer to its input stream (ip), a Boolean (owns), indicat-
ing ownership of the input stream, and the current token (ct).

I gave ct a default value because it seemed sloppy not to. People should not call current() before
get(), but if they do, they get a well-defined Token. I chose Kind::end as the initial value for ct so
that a program that misuses current() will not get a value that wasn’t on the input stream.

I present Token_stream::get() in two stages. First, I provide a deceptively simple version that
imposes a burden on the user. Next, I modify it into a slightly less elegant, but much easier to use,
version. The idea for get() is to read a character, use that character to decide what kind of token
needs to be composed, read more characters when needed, and then return a Token representing the
characters read.
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The initial statements read the first non-whitespace character from =ip (the stream pointed to by
ip) into ch and check that the read operation succeeded:

Token Token_stream::get()

{
char ch =0;
xip>>ch;

switch (ch) {
case 0:
return ct={Kind::end}; // assign and return

By default, operator >> skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the value
of ch unchanged if the input operation failed. Consequently, ch==0 indicates end-of-input.

Assignment is an operator, and the result of the assignment is the value of the variable assigned
to. This allows me to assign the value Kind::end to curr_tok and return it in the same statement.
Having a single statement rather than two is useful in maintenance. If the assignment and the return
became separated in the code, a programmer might update the one and forget to update the other.

Note also how the {}-list notation (§3.2.1.3, §11.3) is used on the right-hand side of an assign-
ment. That is, it is an expression. I could have written that return-statement as:

ct.kind = Kind::end; / assign
return ct; /l return

However, I think that assigning a complete object {Kind::end} is clearer than dealing with individual
members of ct. The {Kind::end} is equivalent to {Kind::end,0,0}. That’s good if we care about the
last two members of the Token and not so good if we are worried about performance. Neither is the
case here, but in general dealing with complete objects is clearer and less error-prone than manipu-
lating data members individually. The cases below give examples of the other strategy.

Consider some of the cases separately before considering the complete function. The expres-
sion terminator, ';', the parentheses, and the operators are handled simply by returning their values:

case';': // end of expression; print
case "+':
case '/":
case '+':
case '-":
case '(':
case')"
case '=":
return ct={static_cast<Kind>(ch)};

The static_cast (§11.5.2) is needed because there is no implicit conversion from char to Kind
(§8.4.1); only some characters correspond to Kind values, so we have to “certify” that in this case
ch does.
Numbers are handled like this:
case '0": case '1': case '2": case '3': case '4": case '5': case '6': case '7': case '8": case '9'":
case '.":
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ip—>putback(ch); /l put the first digit (or .) back into the input stream
xip >> ct.number_value; // read the number into ct
ct.kind=Kind::number;

return ct;

Stacking case labels horizontally rather than vertically is generally not a good idea because this
arrangement is harder to read. However, having one line for each digit is tedious. Because opera-
tor >> is already defined for reading floating-point values into a double, the code is trivial. First the
initial character (a digit or a dot) is put back into cin. Then, the floating-point value can be read
into ct.number_value.

If the token is not the end of input, an operator, a punctuation character, or a number, it must be
aname. A name is handled similarly to a number:

default: // name, name =, or error
if (isalpha(ch)) {
ip—>putback(ch); /l put the first character back into the input stream
xip>>ct.string_value; // read the string into ct
ct.kind=Kind::name;
return ct;
}

Finally, we may simply have an error. The simple-minded, but reasonably effective way to deal
with an error is the write call an error() function and then return a print token if error() returns:

error("bad token");
return ct={Kind::print};

The standard-library function isalpha() (§36.2.1) is used to avoid listing every character as a sepa-
rate case label. Operator >> applied to a string (in this case, string_value) reads until it hits white-
space. Consequently, a user must terminate a name by a space before an operator using the name
as an operand. This is less than ideal, so we will return to this problem in §10.2.3.

Here, finally, is the complete input function:

Token Token_stream::get()
{

char ch = 0;

xip>>ch;

switch (ch) {
case 0:
return ct={Kind::end}; // assign and return
case';': // end of expression; print
case '#':
case '/":
case '+':
case '-":
case '(":
case')':
case '=":
return ct=={static_cast<Kind>(ch)};
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case '0": case '1': case '2': case '3'": case '4': case '5': case '6': case '7': case '8': case '9":

case '.:
ip—>putback(ch); // put the first digit (or .) back into the input stream
*ip >> ct.number_value; // read number into ct
ct.kind=Kind::number;
return ct;
default: // name, name =, or error
if (isalpha(ch)) {
ip—>putback(ch); /l put the first character back into the input stream
xip>>ct.string_value; 1/ read string into ct
ct.kind=Kind::name;
return ct;
}

error("bad token");
return ct={Kind::print};

}

The conversion of an operator to its Token value is trivial because the kind of an operator was
defined as the integer value of the operator (§10.2.1).

10.2.3 Low-Level Input

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remember to
add a semicolon after an expression in order to get its value printed, and having a name terminated
by whitespace only is a real nuisance. For example, x=7 is an identifier — rather than the identifier x
followed by the operator = and the number 7. To get what we (usually) want, we would have to add
whitespace after x: x =7. Both problems are solved by replacing the type-oriented default input
operations in get() with code that reads individual characters.

First, we’ll make a newline equivalent to the semicolon used to mark the end-of-expression:

Token Token_stream::get()

{

char ch;

do { // skip whitespace except '\n’
if (lip—>get(ch)) return ct={Kind::end};
} while (ch!="\n' && isspace(ch));

switch (ch) {
case';":
case \n':
return ct={Kind::print};

Here, I use a do-statement; it is equivalent to a while-statement except that the controlled statement
is always executed at least once. The call ip->get(ch) reads a single character from the input stream
+ip into ch. By default, get() does not skip whitespace the way >> does. The test if (lip->get(ch))
succeeds if no character can be read from cin; in this case, Kind::end is returned to terminate the
calculator session. The operator ! (not) is used because get() returns true in case of success.
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The standard-library function isspace() provides the standard test for whitespace (§36.2.1);
isspace(c) returns a nonzero value if ¢ is a whitespace character and zero otherwise. The test is
implemented as a table lookup, so using isspace() is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a digit (isdigit()), a letter (isalpha()), or
a digit or letter (isalnum()).

After whitespace has been skipped, the next character is used to determine what kind of lexical
token is coming.

The problem caused by >> reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

default: /I NAME, NAME-=, or error
if (isalpha(ch)) {
string_value = ch;
while (ip->get(ch) && isalnum(ch))
string_value += ch; // append ch to end of string_value
ip—>putback(ch);
return ct={Kind::name};

}

Fortunately, these two improvements could both be implemented by modifying a single local sec-
tion of code. Constructing programs so that improvements can be implemented through local mod-
ifications only is an important design aim.

You might worry that adding characters to the end of a string one by one would be inefficient. It
would be for very long strings, but all modern string implementations provide the “small string
optimization™ (§19.3.3). That means that handling the kind of strings we are likely to use as names
in a calculator (or even in a compiler) doesn’t involve any inefficient operations. In particular,
using a short string doesn’t require any use of free store. The maximum number of characters for a
short string is implementation-dependent, but 14 would be a good guess.

10.2.4 Error Handling

It is always important to detect and report errors. However, for this program, a simple error han-
dling strategy suffices. The error() function simply counts the errors, writes out an error message,
and returns:

int no_of_errors;

double error(const string& s)

{
no_of_errors++;
cerr << "error: " << s << '\n';
return 1;

}

The stream cerr is an unbuffered output stream usually used to report errors (§38.1).

The reason for returning a value is that errors typically occur in the middle of the evaluation of
an expression, so we should either abort that evaluation entirely or return a value that is unlikely to
cause subsequent errors. The latter is adequate for this simple calculator. Had Token_stream::get()
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kept track of the line numbers, error() could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively.

A more stylized and general error-handling strategy would separate error detection from error
recovery. This can be implemented using exceptions (see §2.4.3.1, Chapter 13), but what we have
here is quite suitable for a 180-line calculator.

10.2.5 The Driver

With all the pieces of the program in place, we need only a driver to start things. I decided on two
functions: main() to do setup and error reporting and calculate() to handle the actual calculation:

Token_stream ts {cin}; // use input from cin

void calculate()

{
for (;;) {
ts.get();
if (ts.current().kind == Kind::end) break;
if (ts.current().kind == Kind::print) continue;
cout << expr(false) << "\n';
}
}
int main()
{
table["pi"] = 3.1415926535897932385;  // insert predefined names
table["e"] = 2.7182818284590452354;
calculate();
return no_of_errors;
}

Conventionally, main() returns zero if the program terminates normally and nonzero otherwise
(§2.2.1). Returning the number of errors accomplishes this nicely. As it happens, the only initial-
ization needed is to insert the predefined names into the symbol table.

The primary task of the main loop (in calculate()) is to read expressions and write out the
answer. This is achieved by the line:

cout << expr(false) << "\n';

The argument false tells expr() that it does not need to call ts.get() to read a token on which to work.
Testing for Kind::end ensures that the loop is correctly exited when ts.get() encounters an input
error or an end-of-file. A break-statement exits its nearest enclosing switch-statement or loop
(§9.5). Testing for Kind::print (that is, for \n' and ';") relieves expr() of the responsibility for han-
dling empty expressions. A continue-statement is equivalent to going to the very end of a loop.
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10.2.6 Headers

The calculator uses standard-library facilities. Therefore, appropriate headers must be #included to
complete the program:

#include<iostream>// I/O
#include<string>  // strings
#include<map> Il map
#include<cctype> // isalpha(), etc.

All of these headers provide facilities in the std namespace, so to use the names they provide we
must either use explicit qualification with std:: or bring the names into the global namespace by

using hamespace std;

To avoid confusing the discussion of expressions with modularity issues, I did the latter. Chapter
14 and Chapter 15 discuss ways of organizing this calculator into modules using namespaces and
how to organize it into source files.

10.2.7 Command-Line Arguments

After the program was written and tested, I found it a bother to first start the program, then type the
expressions, and finally quit. My most common use was to evaluate a single expression. If that
expression could be presented as a command-line argument, a few keystrokes could be avoided.

A program starts by calling main() (§2.2.1, §15.4). When this is done, main() is given two argu-
ments specifying the number of arguments, conventionally called arge, and an array of arguments,
conventionally called argv. The arguments are C-style character strings (§2.2.5, §7.3), so the type
of argv is char:[argc+1]. The name of the program (as it occurs on the command line) is passed as
argv[0], so argc is always at least 1. The list of arguments is zero-terminated; that is, argv[argc]==0.
For example, for the command

dc 150/1.1934

the arguments have these values:

argc: IZ| argv: ’ | ‘ 0 ‘

s

"150/1.1934"

Because the conventions for calling main() are shared with C, C-style arrays and strings are used.

The idea is to read from the command string in the same way that we read from the input
stream. A stream that reads from a string is unsurprisingly called an istringstream (§38.2.2). So to
calculate expressions presented on the command line, we simply have to get our Token_stream to
read from an appropriate istringstream:
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Token_stream ts {cin};

int main(int argc, char: argv[])
{
switch (argc) {
case 1: 1/l read from standard input
break;
case 2: // read from argument string
ts.set_input(new istringstream{argv[1]});
break;
default:
error("too many arguments");
return 1;

table["pi"] = 3.1415926535897932385; /l insert predefined names
table["e"] = 2.7182818284590452354;

calculate();

return no_of_errors;

}

To use an istringstream, include <sstream>.
It would be easy to modify main() to accept several command-line arguments, but this does not
appear to be necessary, especially as several expressions can be passed as a single argument:

dc "rate=1.1934;150/rate;19.75/rate;217/rate"

I use quotes because ; is the command separator on my UNIX systems. Other systems have differ-
ent conventions for supplying arguments to a program on startup.

Simple as they are, argc and argv are still a source of minor, yet annoying, bugs. To avoid those
and especially to make it easier to pass around the program arguments, I tend to use a simple func-
tion to create a vector<string>:

vector<string> arguments(int argc, char: argv[])

{
vector<string> res;
for (int i = 0; i!=argc; ++i)
res.push_back(argvlil);
return res;
}

More elaborate argument parsing functions are not uncommon.

10.2.8 A Note on Style

To programmers unacquainted with associative arrays, the use of the standard-library map as the
symbol table seems almost like cheating. It is not. The standard library and other libraries are
meant to be used. Often, a library has received more care in its design and implementation than a
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programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there isn’t
much traditional C-style, low-level code presented. Many of the traditional tricky details have been
replaced by uses of standard-library classes such as ostream, string, and map (§4.3.1, §4.2, §4.4.3,
§31.4, Chapter 36, Chapter 38).

Note the relative scarcity of loops, arithmetic, and assignments. This is the way things ought to
be in code that doesn’t manipulate hardware directly or implement low-level abstractions.

10.3 Operator Summary

This section presents a summary of expressions and some examples. Each operator is followed by
one or more names commonly used for it and an example of its use. In these tables:

* A name is an identifier (e.g., sum and map), an operator name (e.g., operator int, operator+,
and operator"" km), or the name of a template specialization (e.g., sort<Record> and
array<int,10>), possibly qualified using :: (e.g., std::vector and vector<T>::o